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Chapter 1

Towards Turing Machines

The whole chapter is highly inspired by Michael Sipser’s book: “Introduction to the Theory of
Computation” |52]. It is a dashing introduction to the notions of Finite Automata, PushDown
Automata, Turing Machines.

We also recommend “Introduction to automata theory, languages, and computation” by John E.
Hopcroft, Rajeev Motwani et Jeffrey D. Ullman [34]; “Computational complezity” by Christos
H. Papadimitriou [43] and “A mathematical introduction to logic” by Herbert B. Enderton [21].

1.1 Deterministic Finite Automata

We will see that any finite automaton can be regarded as a rudimentary Turing machine: a
Turing machine that never writes anything and only goes one direction.

Definition 1.1: Deterministic Finite Automaton

A deterministic finite automaton (DFA) is a 5-tuple (Q, X, 9, qo, F'), where
1) @ is a finite set called the states,

)

2) X is a finite set called the alphabet,
) §:Q x X —> Q is the transition function,
)

4) qo € Q is the initial state, and

(
(
(3
(
(

5) F < @ is the set of accepting statesﬁ

“Accept states sometimes are called final states.

We denote by ¥<“ (or equivalently by ¥*) the set of finite words on ¥ and by ¢ the empty
sequence.
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Example 1.1

o Q= {qo,q1,q}; o &(qo,0) o
5(q07 1) = q
° =101k 6(q1,0) = @
o qo is the initial state; 6(q1,1) = @
6(g2,0) = @
o F'={q} (g2, 1) ¢
Example 1.2
0 1
1
0
The DFA B = (Q, %, 0, qo, F)) where
o Q= {q,a}; o F={a}. o 6(qo,0) 0
o qo is the initial state; (g0,1) = @
6(q1,0) = qo
o ¥ ={0,1} (g1, 1) Q
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Definition 1.2

A DFA A= (Q,%,6,q0, F) on an alphabet ¥ accepts the word w € X< if and only if
o either w = ¢ (the empty sequence) and ¢g € F'

o or w = {ay,...,a,) with each a; € X, and there is a sequence of states rq,..., 7,11
such that:

® 7o = qo
o Vi< n, 6(T’ia ai) = Ti+1

[ Tn+1€F.

Notation 1.1

Given any DFA A, the language recognized by A is

L(A) ={we X~ :w is accepted by A} .

L(A) denotes the language accepted by A.

Example 1.3

The DFA A; below recognizes

L(A1) ={w e X~ : w ends with the letter 1}.
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Example 1.4

The DFA Ay below recognizes

L(As) = {w e X=Y : w ends with the letter 1} .

0 1
1
0
A DFA As.

Example 1.5

The DFA A below recognizes the language

L(A) ={e} u{weX=¥:w ends with the letter 1}.

0 1
1
0
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Example 1.6

The DFA A below recognizes the language

Example 1.7

What is the language recognized by the DFA below 7

Definition 1.3

Any language recognized by some deterministic finite automata (DF A) is called regular.
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1.2 Nondeterministic Finite Automata
Given any alphabet ¥, we both assume that £ ¢ ¥ holds and write 3. for ¥ U {e}.

Definition 2.1

A nondeterministic finite automaton (NFA) is a 5-tuple (Q, X, 6, qo, F'), where

1) @ is a finite set of states,

2) X is a finite alphabet,

4

(1)
(2)
(3) 0:Q x X —> P(Q) is the transition function,
(4) qo € Q is the initial state, and

(5)

5) F < @ is the set of accepting states.

Example 2.1
The NFA N = (Q, %, 0, qo, F') where

o Q={q,q,%}h o d(qo,¢) {a2}

6(9,0) = &

_ . 6((]07 1) = {ql}

O E = {07 1}, 5((]176) _ @
5(q170) = {QL q2}

o qo is the initial state; 6(q1,1) = {g}

6(q2,6) = I

6(q2,0) = {qo}

o F = {qO}. 5((]271) = @
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Definition 2.2

Let N = (Q,X%, 6, qo, F) be an NFA and w € ¥=¥. We say that N accepts w if and only if

o either w = ¢ the empty sequence and ¢g € F

o or w can be written as w = {ay, . .., a,) with each a; € ¥, and there is and a sequence
of states rg, ..., 41 such that:
® 7o = qo,

o Vi<n riy1€d(r,a;),
® i1 € F.

Example 2.2

The NFA N below recognizes the language

LN) ={we XY :w ends with the letter 1}.

0,1
-0
The NFA N

Example 2.3

The NFA N below recognizes the language L(N) = .
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An NFA N.

Example 2.4

What is the language recognized by the NFA N below ?

The NFA N

Proposition 2.1

Every NFA has an equivalent DFA. i.e., given any NFA N there exists some DFA D such
that

Proof of Proposition E

Given any NFA N = (Q, X, 4, qo, F'), we build some DFA D ={Q’, X, ¥, ¢}, F") that recog-
nizes the same language.

(1) @ =P(Q)
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(2) For S < @Q and a € ¥ we set
*qe¥
0'(S,a) ={g;€Q[Ige S ¢ ——q;}

where ¢ £last, ¢’ stands for the existence of a path in the graph of A that goes
through exactly one edge labelled with ”a”, the others being labelled with ”&”.

3) gy ={0eQ|qp > q}

4) F'={ScQ|SnF+a}

Example 2.5

The NFA N

A DFA A equivalent to the above NFA N
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The above DFA A” presented differently.

{q0, 1,92}
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Definition 2.3

Let A and B be languages. We define the regular operations union, concatenation, and star
as follows.

o Union: AuB={x|x€A orxe B}.
o Concatenation: Ao B ={xy|x€ A and y € B}.

o Star: A* ={x1xa... 7 | k =0 and each z; € A}.

Theorem 2.1

Regular languages are closed under union, concatenation and the star operation.

Proof of Theorem E

Let N1 = (Q1,%, A1, q1, F1), N2 = (Q2, %, Ag, g2, F») be two NFAs recognising respectively
A1 and AQ.

Nl NQ

Union We need an NFA A such that N recognizes a string if and only if N7 or Ny
recognizes it. By working nondeterministically, the automaton N is allowed to split
into two copies: we construct A in such a way that N7 and N9 work in parallel at the
same time. We assume Q1 N Q2 = & and qo ¢ Q1 U Q2. Define N = (Q, X, A, qo, F)

where
(1) Q@ ={q} v Q1v Q2.

(2) A c@ x X xQ is defined by: (p,s,r) € A if and only if one of the following is
true
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(a) p=qo (b) pre@: () p.re@q
s=¢ (p,s,r) € Ay (p,s,r) € Ag.
r € {q1, 2}

3) F=F uP.

The machine splits immediately into two copies of itself, which work exactly as Ny
and Ny. It accepts a string if and only if at least one of the two main copies ends up
in an accepting state, i.e., in F} or in Fb, i.e., if and only if N1 or N5 accept it.

®
®®

O
O
e0®

Concatenation Here we need an NFA A that accepts a word w if and only if w can be
broken into two pieces: a prefix and a suffix w = wyw, such that w, is accepted by
N1 and wy is accepted by N'5. We set ¢; as the initial state and let the machine read
the same way N1 would do. Any time that Ny finds itself in an accepting state, we
want A to non-deterministically start reading as if it were A5 but still remaining a
copy of itself: so we make it split any time it comes to some final state of N'i. The
reason is that we want to be able to check longer sub-strings as well, because it might
be the case that the first prefix that is found to be accepted by N1 corresponds to a
suffix that is rejected by N, while there is a longer prefix which is also accepted by
N7 that yields a suffix which is this time also accepted by No. Formally, we define
A by: (p,s,r) € A if and only if one of the following is true

(1) pvrte (2) p77ﬂeQ2 (3) pEFI
(p,s,7) € A1 (p,s,7) € Ao s=¢

r=q2
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The third condition guarantees the splitting. Finally, we set the accepting set to be
F = F>.

Star Here the machine N should be able to check if a word w can be broken into a finitely
many pieces w = wiws - - - Wy, each of them being accepted by N'1. So A has to read
wy as if it were N1, and when it finds itself in an accepting state, it needs to start all
over again and read wy and so on and so forth. The construction is similar to the one
of the concatenation, but since A% contains the empty string, we want N to accept
€. So we just add an initial state gy which is also an accepting state, and from where
the initial state of Ny is reached by an & move.

1.3 Regular Expressions

Definition 3.1

We say that R is a reqular expression if R is of one the following form:
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(1) a (for some a € X) 3) ¥ (5) R10o Ry

(2) 13 (4) R1 UR2 (6) Rl*

where R; and Ry are regular expressions.

The expression € represents the language containing a single sequence, namely, the empty se-
quence, whereas (J represents the language that doesn’t contain any sequence. Notice that

(1) Reg=FoR=0 (2) @* = {e}.

Definition 3.2

Let R be a regular expression. We define by induction its associated language L(R) as

follows:
(1) L(a) = {a} (4) L(R1 v Rg) = L(R1) v L(R2)
(2) L(e) = {e} (5) L(Rio Ry) = L(Ry) o L(Ry)
(3) L(@) =g (6) L(RY) = L(R1)*.

Theorem 3.1

A language L is regular if and only if there exists a regular expression R such that L = L(R).

Proof of Theorem IE

(<) Given any any regular expression R, we show, by induction on the length of R, that
the language L(R) is recognized by some NFA.

(1) If the length of R is 1:
(a) L(a) = {a}

@ -

(b) L(e) = {e}
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(c) L(D) =&

(2) If the length of R is larger than 1, we need to consider the following regular

expressions.

(a) L(R; v Ry) = L(R1) v L(Ry)

(b) L(Ry o Rp) = L(R1) o L(Ry)

(¢) L(RY) = L(R1)*.

All three results derive immediately from Theorem

(=) (1) We go from some n-states DFA to some n + 2-states Generalized-NFA:

(A) an initial state “s”
(B)
(C) a transition s = qo
(D) a transition ¢ = a (each accepting state q # a)

an accepting state “a”

(b) we reduce the set of accepting states to {a}.

(2) We go from some k + 1 + 2-states Generalized-NFA [7] to some k + 2-states
Generalized-NFA by removing one state from the original automaton: g¢,;, ¢
{s,a} and for each states gi, ¢ {a,qrip} and qour ¢ {S,qrip} we set the new
transition to be:

Rin—>rip o (R'rip—>'rip)* o R'rip—>out U Rinsout
Gin Gout

where Rij—rips Rrip—rips Rrip—out and Rip_ous denote the following transitions:

Rin—»m’p RM’p—»out

(a) Qin > Qrip (C) Arip > out
R.; )

b ) —Mp . Rinaou

( ) Qrip Qrip (d) Gin - Gout-

(3) We end up with a 2-states (“s” and “a”) Generalized-NFA with a single transi-

tion of the form s = a. The regular expression R gives the solution.
O

“an NFA whose transitions are labelled with regular expressions.
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Example 3.1

(a) 0,1 (b) ©'—(€ | ) 0,1

€
10U1)" 0*1(0 U 1)*

(c) @ (d)

An other example with a more complicated automaton.

Example 3.2

(1)
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()
5
(3)
0 00u1
— :
01 10U0
1 €
11
(4)
0(00U 1)*
&) S @
000U 1)*01U 1 (10U0)(00U1)* Ue
(10U 00)(00 U 1)*01 U 11
(5)

(000U 1)*01 U 1) ((10 U 00)(00 U 1)*01 U 11)"((10U0)(00U 1)* Uce) U (000U 1)*)

® @

1.4 Non-Regular Languages

Notice that any finite word on ¥ can be coded by an integer, so that there are only Ny many
regular languages. But there are 280 many languages for there are as many as the number of

subsets of N. Hence most languages are not regular!

Theorem 4.1: Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is
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any sequence in A of length at least p, then s may be divided into three pieces, s = xyz,
satisfying the following conditions:

(1) for each i = 0, zy'z € A,
(2) |y| > 0, and

(3) [zyl <p

Proof of Theorem IE

Let A be any DFA such that £(A) = A. Set p to be the number of states of A. Let s
be accepted by A. Then s may be broken into three pieces: s = zyz. Such that the path
go <> ¢ never visits twice the same state. The path ¢ 2 ¢ visits twice the state ¢ but
none of the others twice. This holds since for every word u of length at least p every path
¢ 5 ¢” in A visits at least twice the same state.

Example 4.1

The language {0"1™ | n € N} is not regular.

By contradiction, assume there exists some DFA A = (Q,X,0, qo, F') which recognizes
{0™1™ | n € N}. We consider p = |@| the number of states of A. the word 0717 is accepted
by A. By the previous Pumping Lemma there exist x,y and z such that 017 = zyz and

(1) for each i > 0, zy‘z € {0"1" | n € N},
(2) Iyl > 0, and
3) lzyl <p

But since |zy| < p, it turns out that xy € 0* and z € 0*1*. Therefore, for each integer i > 1
we have zy’ € 0%, hence zy'z contains too many 0’s compared to 1’s: a contradiction.
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1.5 Pushdown Automata

Definition 5.1

A pushdown automaton (PDA) is a 6-tuple (@, >, T, 4, qo, F'), where @, 3, T and F' are all
finite sets, and

1) @ is the set of states,
2) X is the input alphabet,

4) 0:Q x X, x ' — P(Q x I'y) is the transition function@

)
)
3) T is the stack alphabet,
)
5)

qo € @ is the initial state, and

(
(
(
(
(
(

6) F < Q is the set of accepting states.

“For a deterministic version, replace P(Q x I'c) by Q x I'..

Definition 5.2

A pushdown automaton M = (Q,X%,T,6,qo, F') computes as follows. It accepts input w
if w can be written as w = wiws...w,,, where each w; € Y. and sequences of states
ro,71,...,Tm € @ and sequences sg,s1,...,8y, € ['S¥ exist that satisfy the next three
conditions. The sequence (s;)i<m represent the sequence of stack contents that M goes
through on the accepting branch of the computation.

(1) 79 = qo and sy = . This condition testifies that M starts out properly: both in the
initial state and with an empty stack.

(2) Fori=0,...,m—1, we have (r;11,b) € §(r;, wi+1,a), where s; = at and s;;1 = bt for
some a,b € I'; and t € I'*. This condition states that M moves properly according
to the state, stack, and next input symbol.

(3) mn € F. This condition states that an accepting state occurs right at the end of the
reading of the input.
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(1) One step of a computation:

[eececeesccccncssse ) B 0

WiW2W3 * ** Wi—1WiWi41 * W

ceccccrrcEcceesees ) (O

(2) The special case where a = ¢ and b € T" (the PDA

e . .
N | N

c Ny 4
.

. |

l ’@\0 ol

B .

i

; \ ‘ }

) \ - /

i Y \

:

' ] Ry

]

|

|

)

:

|

W1W2W3 * +* Wi — 1 W Wi41 ** * Wy

. ! LA
N \ '
\
!
777777 @h\’ -
. P @
- 8
\\ \\
X Y

WIW2W3 * - * Wi — 1 Wi Wig1 * ** Wi

“pushes” b to the top of the stack)

cececcrceecceesees 0y (O

(3) The special case where a € I and b = € (the PDA

stack)
a
e . J
N ¥ oA
c S W
|y
; ¥ P
: WLW2W3 * * - Wi 1 WiWi41 * - Wi

Example 5.1

. ! LA
N \ '
\
!
777777 @h\’ -
. P @
- 8
\\ \\
X Y

WIW2W3 * * * Wi — 1 Wi Wi41 * ** W

“pops off” a from the top of the

. ! '
o ¥ VO
i
______ @\ -t
\ - @
\ .- \
\ AN
] 1

WiW2W3 * +* Wi — 1 Wi W51 * ** W

(1) The language {0™1™ | m € N} is recognized by the following PDA.
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E,€ > €

e, e — L
— 0,e — 0

1,0 —» ¢

@ML%E I L0

(2) The language {0°172% | 4,5,k > 0 and i = j or i = k} is recognizable by the following
PDA, however it is not recognizable by a deterministic PDA.

1,0 —» ¢ 2,e > ¢

0,e =0
el —1

6,5%6/\8,J_*>J_©

l,e —»¢ 2,0 > ¢

1.6 Context-Free Grammar

Definition 6.1

A context-free grammar is a 4-tuple (V, X, R, S), where
(1) V is a finite set whose elements are called variables,
(2) X is a finite set, disjoint from V. Its elements are called terminals,

(3) R is a finite set of rules. Each rule is a couple of the form (&, u) where £ € V' and
ue (VuX)*[4

(4) S €V is the initial variable.

“In particular, one may have u = .

If u,v and w are sequences of variables and terminals, and A — w is a rule of the grammar,
we say that uAv yields vwv (written wAv = uwv). We write u =* v if u = v or if a sequence
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Ui, us, . .., u exists for k£ > 0 and
U= U = U = ... = Up = 0.
The language generated by the grammar is {w € ¥<¥ | § =* w}.

Example 6.1

Consider (V, %, R, S) the context-free grammar where V = {S}, ¥ = {0, 1,1} and R is the
following set of production rules:

oS — 051 oS —1f
This grammar generates the language {0"41" | n € N}.
Example 6.2

Consider (V, X, R, S) the context-free grammar where V- = {S}, ¥ = {0,1} and R is the
following set of production rules:

o §— 051 oS —e¢
This grammar generates the language {0"1" | n € N}.
Example 6.3

Consider (V,X, R, S) the context-free grammar where V. = {S, A, B,C, D}, ¥ = {0, 1,2}
and R is the following set of production rules:

oS— AB o B— B2 o D— D1
oS —C o B—¢ o D—¢
o A— 041 o C— 002

o A—c¢ oC—D

which are usually summarized by:

oS— AB|C o B— B2|¢ oD— Dl ]|e
o A— 041 | ¢ o C—0C2|D
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This grammar generates the language {0°172% | i,j,k >0 and i = j ori = k}.

Theorem 6.1

A language is recognized by a PDA if and only if it is context-free.

Proof of Theorem E

(<) Get a context-free grammar. First notice that it is equivalent to add strings to the
stack all at once or one at a timd? The Pushdown P works as follows:

(1) P has four states: the initial state, the final accepting state, the final rejecting
state, and a state called “Loop”

(2) While in the initial state, P places a marker symbol “1” followed by the start
variable S inside the stack, and goes to the “Loop” state. (So that the stack
content is now S1.)

(3) While in the Loop state,

(a) If the top stack is a variable A, then P selects non-deterministically one of
the rules for A and substitutes A by the string on the right hand side of the
rule and remains in the Loop state.

(b) If the top stack is a terminal symbol a, then P reads the next input symbol
from the input and compares it to a.

(A) If they don’t match, P enters the final rejecting state (hence this branch
of non-deterministic computation is rejected).

(B) If they do match, P pops off the terminal symbol a from the top of the
stack, remains in the Loop state and starts again.

(c) If the top of stack is “1”, then P enters the final rejecting state. Notice
that the only way the input word can be accepted is if no letter (from the
input) remains to be read — since there is no transition from this final sate.

(=) We start from a PDA and construct P an equivalent one such that

(1) P has a single accepting state gqcc.
(2) Tt empties its stack before accepting
(3) Each transition either pushes a symbol onto the stack or pops one off, but does

not do both at the same time so that the content of the stack never stays put.

From P = (Q,%,T, 6, qo, {qacc.}) We construct the context-free grammar G.
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(1) V ={4p [ p,qe @},
(2)
(3)
(4)

> is unchanged,
the start variable is Aqg, gqcc. -
The set of rule R is:

(a) For each p,q,r,s € Q, a € T and e, f € X, if §(p,e,e) contains (r,a) and
d(s, f,a) contains (¢, ) put the rule A,; — e A,sf in R.

(b) For each p,q,r € Q put the rule Ap; — Apr Ay in R.

(c) For each p € @ put the rule Ay, — ¢ in R.

Why is it the case that the language recognized by P is the one derived by G?

(=) If w is accepted by P, then there exists a computation that accepts it. Notice
that by construction, this computation never leaves the stack content still and
the automaton ends with an empty stack. So, when something is pushed in the
stack, it must be popped off later on. So, the whole computation which goes
from ¢g to guee. determines one derivation.

(<) Any successful derivation induces an accepting computation.

O

“This is an easy exercise to construct from any given PDA that can push finite words to the stack,
another one that only pushes letters.

Every regular language is context-free. But many languages are neither regular nor context-free.

Theorem 6.2: Pumping Lemma for Context-Free Languages

If A is a context-free language, then there is a number p (the pumping length) where, if s is
any sequence in A of length at least p, then s may be divided into five pieces, s = vwxyz,
satisfying the following conditions:

(1) for each i > 0, vw'ay'z € A,
(2) |wy| > 0, and

(3) lwry| <p

Proof of Theorem E

See Theorem 2.19 in [52]. We first fix a grammar. Then we concentrate on getting a
derivation tred” large enough so that there is one path — from the root to some leaf — that
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visits twice the same variable T'. For this, if k£ is the number of variables in the grammar,
we need a tree of height at least k+1. We take m to be the maximum number of symbols in
the right hand side of a rule EL and take n = max(2,m). Every word of height at least n**!
that is generated by this grammar has a derivation tree with at least one branch whose
length is > k + 1. We set p = nF*1.

Take any word u generated by this grammar such that |u| = p holds. Consider the smallest
— in terms of nodes — derivation tree that produces u, and consider a node 7" which repeats
only once and such that there is no other variable that repeats in the subtree induced by
this node. The whole derivation tree is described below:

S

Notice that |wzy| < p holds, because the subtree induced by 7" has never twice the same
variable (except for T itself which appears only twice). Hence every branch on this subtree
has length at most k + 1, which guarantees that wzy has length at most p = n*+1.

Notice also that |wy| > 0 because otherwise, we would have w = y = €. But then the deriva-
tion tree below would also produce the same word which would contradict the minimality
of the one we chose.

)

We also clearly have, for each i > 0, vw'zy'z € A:

35
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w T Y

“notice that in a derivation tree every leaf is a terminal symbol, and very other node is a variable.
®k is the maximum number of immediate successors of a node in the derivation tree.

Example 6.4

The following language is not context-free:
{0"1™2" | n € N}.

Towards a contradiction we assume that this language is context-free so that there exists
some integer p that verifies the conditions of Theorem We consider the word u =
0P1P2P € A. By Theorem there exist words v, w, z,y, 2z such that u = vwzyz and

(1) vw'zy‘z e A (Vi = 0) (2) |wy| >0, and (3) |lwry| <p

Since |wzy| < p holds, this word cannot contain all three letters 0,1 and 2. We distinguish
two different cases:

(1) if wry € 0¥1*, then z € 1*2*. Therefore for each i > 1 vw'ry’z contains either more
0’s than 2’s or 1’s than 2’s.

(2) if wry € 1¥2*, then v € 0*1*. Therefore for each i > 1 vw'xy'z contains either more
1’s than 0’s or 2’s than 0’s.
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Turing Machines

A Turing Machine (TM) is a general model of computation introduced in 1936 by Alan Turing
[60]. It consist in an infinite tape and a tape head that can read, write and move around. It can
both read the content of the tape and write on it. The read-write head can move both to the
left and to the right. The tape is infinite. There are special states for rejecting and accepting
which both take immediate effect.

‘1‘0‘1‘0‘0‘1‘u‘u‘u‘u‘u},,,.“......v..,.v,, -

With Turing machines as for pushdown automata and finite automata, one has the notion of
deterministic machines and non-deterministic ones. We consider deterministic Turing machines
first.

2.1 Deterministic Turing Machines
Definition 1.1

A (deterministic) Turing machine is a 7-tuple (Q,%,T', 0, g0, qacc., Grej.) Where Q,3,T" are
all finite sets and

(1) @ is the set of states,

(2) X is the alphabet not containing the blank symbol, v,
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3) T is the tape alphabet which satisfies ue I’ and X < I

4) 0:Q xT'— @Q x T’ x {L, R} is the transition function

6) Qace. is the accepting state

(3)

(4)

(5) qo is the initial state
(6)

(7) @rej. is the rejecting state

Clearly gqcc. and grj. must be different states.

Notice that the head cannot move off the left hand end of the tape. If § says so, it stays put. A
configuration of a Turing machine is a snapshot: it consists in the actual control state (g), the
position of the head and what is written on the tape (w). To indicate the position of the head
we consider the word wg which is located to the left of the head and slice the tape content w

into the wogw; = w. This means that the head is actually positioned on the first letter of w;.
Strictly speaking the content of the tape is an infinite word:

but we forget about the infinite suffix 1 u w.... We then write woqw, to say that
o the tape content is wow; L L L. ..
o the head is positioned on the first letter of wq L L L ...
o the actual control state is q.

The initial configuration on input w € X< is gow.
An halting configuration is

o either an accepting configuration of the form wyquec. w1,
o or a rejecting configuration of the form wogycj ws.

Given any two configurations C, C" we write C' = C’ (for C yields C’ in one step) if there exist
a,b,cel’, and u,v € I'¥ such that

o either C' = uag;bv, C' = ug;acv and 6(g;, b) = (gj,¢, L),
o or C = gibv, C' = gjcv and 0(g;,b) = (g5, ¢, L),

o or C = ug;bv, C" = ucg;jv and 6(g;, b) = (gj,¢, R).
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Definition 1.2

A Turing machine accepts input w if there is a sequence of configurations Cy, ..., Cy such
that
(1) C() = qow

(2) C; yields Citq (for any 0 < i < k)

(3) Cf is an accepting configuration.

Definition 1.3

The set of all words accepted by a Turing machine M is the language it recognizes:

LM) ={we XY | M accepts w}.

Example 1.1

A Turing machine that recognizes

{ww | we {0,1}*}
where w is the mirror of w (for instance 001011 = 110100).
(Q,%,T,6,90, Gace., Grej.) Where

(1) Q = {q07 Qremember,o,look,for,u,go,right; Qremember,l,look,for,u,go,right; GQurite 0, Qurite_1,
Qlook for_Li_go_left; {step_right; Jacc) Grej }

(2) ©={0,1}
(3) T'={0,1, 4}
(4) 6:QxT'— Q x T x {L, R} is defined by
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(QO7 ) —  {acc.

((Io7 ) - (Qremember 0-look_for_Li_go_right; L, R)
(q07 ) = (Qremember,l,look,for,u,go,rlght7 L, R)
(Qremember 0-look for_Li_go.right, L’) — (QWrite,Oz L, L)

(Qremember 0_look _for_Li_go right; O) - (Qremember,o,look,for,ugo,right7 0, R)
(Qremember 0_look _for_Li_go_right; 1) - (Qremember,o,look,for,u,go,righta 17 R)
(Qremember 1_look_for_Li_go right, U ) - (QWrite 1, U L)

((Iremember 1_look_for_Li_go right, 0) = (Qremember 1 look for_Li_go right, 0 R)
(q:cemember 1 look for_Li_go right; 1) - (qremember 1 look for_ui_goright; 1 R)
(qwrlte 0, ) —  (rej.

(‘hrlte 05 ) s (q100k,for,u,go,1efta U, L)

(qwrlte 0, ) —  (rej.

(qwnte 1, U ) —  (rej.

(Gurite_1,0) —  Qrej.

(Qerte 1, ) — (q100k,for,u,go,1eft7 L, L)

(q100k for_Li_go_. left, U ) - (QSteingh‘h U, R)

(q100k for_Li_go_left, 0) - (q100k,for,|_|,go,left7 07 L)

(q100k for_ui_go left, 1) = (q100k,for,\_|,go,lefta 17 L)

(QStep rlghtv ) —  ({acc.

(QStep right, 0) = (qremember,o,look,for,u,go,right7 L, R)
(QStep right, 1) — (Qremember,l,look,for,u,go,right7 L, R)
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If we rename the states :

qo ~ 4o
(remember_0_look_for_i_go right ~~ (1
(remember_1_look for_i_go right ~~ (2
Qurite_ 0 ~ g3
Qurite_1 ~ 44
Qlook_for_Li_go_left ~ (g5
(step_right ~ (6

the transition function becomes:

(Q37 1) —  ({rej.
(Q47 ‘—‘) —  (rej.
(¢1,0) —>  grej.
(Q471) - (Q5,I_I,L)
q170) - (QI7O7R) (Q57|—|) - (QGaL’7R)
(¢5,0) — (¢5,0,L)
(¢5,1) — (¢5,1,1)
(QGv |—‘) — {acc.
(QG,O) - (Q17 \_J,R)
(Q671) - (QQv '—J7R)

Definition 1.4

A language L is Turing recognizable if there exists a Turing machine M such that

L = L(M).

Proposition 1.1

Turing Machines with bi-infinite tapes are equivalent to Turing machines.
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Proof of Proposition IE

Left as an exercise.

O
Proposition 1.2
Pushdown automata with 2 stacks are equivalent to Turing machines.
Proof of Proposition IE
Left as an exercise. O

Definition 1.5

A Decider is a Turing machine that halts on all inputs.

Definition 1.6

A language is Turing decidable iff there exists a Decider that recognizes it.

(We will see later that Turing recognizable is also called recursively enumerable (r.e. for short)
and decidable is also called recursive.)

Example 1.2

A Decider for {a"b"c" | n € N}:
o Scan the input from left to right to be sure that it is a member of a*b*c* and reject
if it isn’t.
o Return the head to the left and change one ¢ into an z, then one b into x, then one
a into x. Go back to the first blank w.

Repeat again until the tape is only composed of x, in which case accept. Otherwise
reject.
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Definition 1.7

A k tape Turing machine is the same as a Turing machine except that is composed of k
tapes: (1),...,&), with k& independent heads so that the transition function becomes

§:QxTF — QxT*x {L R}
Notice that a configuration of a k-tape Turing machine is of the form

(ulqvl , U2qU2  , ...... ) ukqvk)

O ® ®

Proposition 1.3

Given any Turing machine there exist
(1) an equivalent Turing machine with a bi-infinite tape,
(2) a multi-tape Turing machine,

(3) a multi-tape with bi-infinite tapes Turing machine.

Proof of Proposition E

Left as an exercise. O
Theorem 1.1

Every multi-tape Turing machine has an equivalent single tape Turing machine.

Proof of Theorem IE

Let M be a multi-tape Turing machine. We will describe a Turing machine S that rec-
ognizes the same language. Let (w1, ws,...,wy) be the input of M on its k tapes. The
corresponding input of S will be fwifwof ... fwel, where § does not belong to the alphabet
of M. To simulate a single move of M, S scans its tape from the first § which marks the
left-hand end, to the k+ 1" § (which marks the right-hand end) replacing each letter a right
after the f symbol (except for the k + 1** one) by a to indicate the position of the heads.
Then S makes a second pass to update the tapes according to M’s transition functions.
If at any point S moves one of the virtual heads to the right onto a f, this action signifies
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that M has moved the corresponding head onto the previously unread blank portion of
that tape. So § writes a blank symbol on this tape cell and shifts the tape contents from
this cell until the rightmost f, one unit to the right. Then it continues the simulation as
before.

2.2 Non-Deterministic Turing Machines

Definition 2.1

A non-deterministic Turing machine (NTM) is the same as a deterministic Turing machine
except for the transition function which is of the form:

§:QxT' — P(QxT x{L,R}).

The computation of a (deterministic) Turing machine is a sequence of configurations
Co=—=Ci=...=C), = ...

that may be finite or infinite.

It accepts the input if this sequence is finite and the last configuration is an accepting one.
The computation of a non-deterministic Turing machine is no more a sequence of configurations
but a tree whose nodes are configurations. This tree may have both infinite and finite branches.
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The machine accepts the input if and only if there exists some branch that is finite and whose
leaf is an accepting configuration.

Theorem 2.1

For every NTM there exists a deterministic Turing machine that recognizes the same lan-
guage.

Proof of Theorem E

0 U|U | Lo .
tj1jolujulufu .
v -
@;1?42134621714212uuuuu ,,,,,,,,,, .

We consider a 3-tape (0,2 and (3)) deterministic Turing machine M to simulate a NTM
N:

o (1) @ is the input tape,
(2) () is the simulation tape, and
(3) ® is the address tape.

o Initially, (1) contains the input w and (2) and (3) are empty.
o (D) always keeps the input w. So the content of (1) is never modified.

o (2) simulates A/ on one — initial segment of a — branch of its non-deterministic com-
putation tree.

o (3 contains a finite word which corresponds to a succession of non deterministic
choices. For instance the word 132 stands for: among the non-deterministic options
choose the first one for the first transition, the third one for the second and the second
one for the third. This means that we consider k € N to be

max{Card(6(q,7v)) | g€ Q, v T}

and for each | ¢ € @, v € I' we fix a total ordering of d(q,~).
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Words on (3) all belong to {1,2,...,k}*. Moreover, during the running time, the
content of (3) changes over and over again until the machine accepts. This series gives
rise to an enumeration of the infinite k-ary tree in a breadth-first search. This means

it enumerates all words in {1,2,...,k}* along the following well-ordering;:
Ju < vl
U< v or
|u| = |’U| and u <jegic. v

which gives:

£,1,2, ..., k11,12, ..., 1k,21,22, ..., 2k, ...... k1, k2, kk, 111,112, ... 11k, .. ....

o At first, M Copies the content of () (= the input w) to (2.

o It then uses (2) to simulate N' with input w on the branch b of its non-deterministic
computation which is lodged on (3). In case the word b does not correspond to a real
computationﬁ or if the simulation of AV on (2) either reaches the rejecting state or
does not reach any halting state at all, then M erases completely (2), replaces b on
(3 with its the immediate <-successor, and starts all over again — by copying (1) on
(2) and simulating N on (2) in accordance with the series of choices recorded on (3).

O]

“this is the case for instance if from the initial configuration gow there are only two non-deterministic
choices available, whereas the word on @ reads 3.. ..

Proposition 2.1

o Decidable languages are closed under union, intersection and complementation.

o Turing recognizable languages are closed under union and intersection.

Proof of Proposition E

Left as an exercise.
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Definition 2.2

Tape p of a k-tape Turing machine works as a printer if its head on tape p only goes right.
We say that on tape p, the infinite word agaiasas...... e I'“ is printed out by some
computation of the Turing machine if

o either the Turing machine halts and agajasas. .. ... is what shows on tape p, or

o the Turing machine never halts but for each cell n of tape p, a, is the letter printed

outl

“This is printed out precisely at step n + 1 since the head only goes right.

Definition 2.3

An enumerator is a 2-tape Turing machine whose second tape works as a printer.
Assuming that on the empty input it prints out the infinite word agaiasas......... we say
that it enumerates the following language

k=0and agpy;r1 = U
L=1Rag...ap; € XY |0<iand or
ag—1 = Qfyir1 = U
(Notice that the alphabet of the printer tape must satisfy ¥ u {e, 1} € T" so that it can
eventually print out the empty word).

This means that an enumerator prints out words separated by . When it prints out an ever
ending word that contains no wi, the result is the same as if it were printing an ever ending
sequence of L1 the same language would be enumerated. So, for every enumerator £ there
exists an equivalent enumerator £ that enumerate the same language but will always, whenever
it writes a letter different from i, write a L symbol further away.

Such an enumerator would print out something like

U*wo L U¥wy b L L UL U w, U MWyt
when {w; | i € N} = £ whenever infinitely many words are printed. Or
U*wo u u¥fwy b LFwy L L UMW, UL L L L
when {w; | i < n} = L is finite. In particular it would print out
UL LU U U LU U U UL L U L L L U U e eeeeeeenaeane.

for the empty language.
Notice that the words that compose £ may come in any order, and they also may be printed
out many times or even infinitely often.
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Definition 2.4

A language L is recursively enumerable if there is an enumerator that enumerates L.

Theorem 2.2

A language is Turing Recognizable if and only if it is recursively enumerable.

Proof of Theorem @

(=) from M we build £ that enumerates £(M).

(1) Repeat the following for i = 1,2,3,...
(2) Successively for each word w € ¥, run M for i-many steps on w

(3) If any computation accepts, print out the corresponding w.

(This way every word w € £ will be printed out — even infinitely often — and none
others.)

(<) From & we build a k-tape Turing machine M. On input w: it runs £ on two of its
tape, and some other one it checks every time £ outputs some word v, whether v = w

or not and accepts if eventually they are the same.
O

Proposition 2.2

For any infinite L € <%,

( there exits an enumeratot] € which prints out

L is Turing decidable <= <

such that <
lul < v

1<) = or

lu| = |v| and u <jegic. v
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1. Whose head on the printing tape can stay put.

Notice that this enumerator is required to leave exactly one L between the successive words
that it prints out, so that whenever it prints out two consecutive v, it will forever on only print
u symbols (which means go right indefinitely without modifying the content of the tape).

Proof of Proposition @

Left as an exercise.

2.3 The Concept of Algorithm

In 1900, Hilbert gave a list of the main mathematical problems of the time [31} 132]. The 10%
one was the following: given a Diophantine equation with any number of unknown quantities,
and with rational integral numerical coefficients, can we derive a process according to which
it can be determined in a finite number of operations whether the equation admits a rational
integer solution? This corresponds to the intuitive notion of an algorithm. Proving that such an
algorithm does not exist requires a formal definition of the notion of “algorithm”. The “Church-
Turing thesis” states that the informal notion of an algorithm corresponds exactly to the notion
of a A-calculus formula or equivalently to a Turing machine.

In 1970, Yuri Matijasevic prove that the 10*" problem of Hilbert is undecidable [40]: assuming
that the notation P(x1,...,z,) stands for a polynomial with integer coefficients, then there is

no decider for
{P(z1,...,zp) | I(a1,...an) eN"  P(ai,...,an) = 0}.

Definition 3.1

A “coding” is a rule for converting a piece of information into another object. Given any
non empty sets F, F, a coding is a one-to-one (total) function

CZEQF.

Example 3.1

2this is combined work of Martin Davis, Yuri Matiyasevich, Hilary Putnam and Julia Robinson
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E={0,1}*, F=Nandc: E L Fisa coding defined by:

c(w) = Tw’ (= the word “lw” read in base 2).

Notation 3.1

Given any Turing machine M, we write

o M(w) | to say that the machine M stops on input w

e M(w) l§ means that M stops in an accepting configuration, and

e M(w) [ means that M stops in a rejecting configuration.

o M(w) 1 to say that the machine M never stops on input w.

We notice the following:

(1) Given any finite alphabet ¥, and any Turing machine M whose alphabet is X, there exists
oneﬂ Turing computable coding: ¢ : ¥<¥ — {0,1, u}<“ and a Turing machine M, with
tape alphabet {0,1, 1} such that M accepts w if and only if M, accepts c(w).

(2) Every regular language is decidable because a DFA is nothing but a deterministic Turing
machine that always goes right.

(3) Every Context-free language is decidable, because any PDA can be easily simulated by
some equivalent non-deterministic Turing machine.

(4) We have the following strict inclusions of languages.

Regular & Context-Free & Decidable & Turing Recognizable.
Il I

Recursive Recursively Enumerable

In computer science, a programming language is said be “Turing complete” or “universal” if
it can be used to simulate any single-tape Turing machine. Examples of Turing-complete pro-
gramming languages include:

o Ada o Common Lisp o JavaScript o Python
o C o Haskell o Object Pascal o Lisp
o CH++ o Java o Perl o Pascal

3There exist infinitely many such codings.
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o R o Smalltalk o Prolog o TEX, etc.

One step further: we go from looking at Turing machines as acceptors (which recognize a
language, i.e. a set of input), to machines that compute functions. But since a Turing machine
may never halt on a given input, the function it calculates is a partial functios; so, not necessarily
defined on the whole domain.

Definition 3.2

Given any two non-empty finite sets A, B, a partial function f : A<¥ — B<“ is “Turing
computable” if and only if there exists a Turing machine M such that

o on input w ¢ dom(f): My(w) 1, and

o on input w € dom(f): My(w) |€ with the word “f(w)” on its tape.

2.4 Universal Turing Machine

If we compare a Turing Machine with a computer, on one hand the Turing machine seems much
better because it can compute for ever without any chance to breakdown and it has an infinitely
large storage facility. But on the other hand, a Turing machine seems to be more of a computer
with a single software program, whereas a computer can run different programs.

A computer resembles more of a Turing machine with finite capacity but, a Turing machine
that we can modify by changing its transition function — every program is like a new transition
function for the machine.

How are we going to address this issue, since we claimed that a Turing machine is an abstract
model of computation ? This answer to this is the Universal Turing Machine. It is a machine
that can work just like any other machine provided that we feed it with the right code of the
machine.

We will employ universal Turing machines to obtain:
(1) a language that is Turing recognizable but not decz’dableﬂ
(2) alanguage that is not Turing recognizable.

From now on, we only consider Turing Machines with fixed alphabets ¥ = {0,1},T" = {0, 1, u}.
Any such Turing machine is of the form:

M = )

4in other words: a non-recursive recursively enumerable language.
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Where ¢ is the description of the transition function of M:
é =

So, that the description of a Turing machine is a finite word over some given finite alphabet.
To be precise, the description of such a machine is a finite sequence M over the following finite
alphabet:

A:{7a7777777777aaa7 777{)777}'

Since Card(A) < 2% we can code any letter [ € A by a sequence of eight 0’s and 1’s, i.e we take
any 1-1 mapping
C:A—s{0,1}"

and we define a Turing computable coding
c: ASY —{0,1}=%

by
clag . ..ap) = C(ap)"Cla1)"Claz)" ... Clap).

We denote by "M’ the code of M, i.e.,
M = c(M).
Clearly, the following language is decidable:
{'M": M is a TM;}.

Proposition 4.1: Universal Turing Machine

There exists a Turing machineﬂ U such that on each input of the form vw € {0, 1}*,

if v = "M’ for some Turing machine@ M, then U works as M on input w.

“working on alphabets ¥y = {0,1} and I'yy = {0,1, L}
Yalso working on alphabets ¥y = {0,1} and I'yy = {0,1, U}

Notice that for any word u € {0,1}*, if there is a prefix of u which is the code of a Turing
Machine, then this prefix is unique E Therefore, in case a word u € {0,1}* can be decomposed
into u = "M'w for some Turing machine M, this decomposition is then unique.

This means for instance that on any input w:

Sthis comes from the fact the last letter of a word that defines a Turing machine is ). Therefore, reading u
from left to right by blocks of eight 0’s or 1’s, the first block that corresponds to ")' marks the end of the wanted
prefix.
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o U(w) 1 if and only if M(w) 1;
o U(w) [£ with the word w’ on its tape if and only if M(w) [ with the word w’ on its tape;

o U(w") 1€ with ' on its tape if and only if M (w) 1€ with ' on its tape.
Proof of Proposition IE

We build a 6-tape deterministic Universal Turing machine U.

(1) on (O the input "M'w is inserted. It will never be modified during the rest of the
computation. Then U/ copies the code of
(a) the transition function of M — ' — on (2);
(b) the initial state of M ~ "¢y’ — on @[}
(c) the accepting state of M — "guee.’ — on (@) B

(d) the rejecting state of M — "¢,¢;." —on (5
(2) It then uses (6) to simulate M on input w: for each step of M

(a) U reads a letter — say 0 — on (6), and

(b) using the code of the actual state — say "¢3' — on @), U looks in (2) for the code
of the corresponding transition — say "(¢3,0,¢1, 1, R)' — and then

(c) U verifies that the code of the new state — here "¢, ' — is different from the content
of @ and (5) (otherwise, if it corresponds to the content of (4) it means that it
is "Guee. , and U accepts right away, and if it corresponds to the content of (5) it
means it is '¢ye;.", in which case U rejects).

(d) If the new state is different from both gge.. and gpe;. — in our example ¢; is
different from both gqcc. and grej. — U replaces on (6) the letter it just read with
the new one — here it replaces 0 by 1 — and still on tape (6) it makes the move
indicated — here it goes right — and finally,

(e) U replaces on (3) the code of the old state by the new one — here it replaces "g3’
by ‘g1
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“later on this tape will store the code of the actual state that M is on.
®the content of @ will never be modified in the future.
“the content of ) will never be modified in the future.
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2.5 The Halting Problem

Proposition 5.1

The following language is Turing recognizable but not decidable:

{"M'we{0,1}* | M is a TM that accepts w}.

Proof of Proposition E

By making use of a universal Turing machine, we can easily show that this language is
Turing recognizable.

Towards a contradiction we assume there exists a Decider D that decides this language.
We build a Turing machine H which works the following way:
on input w

o if D accepts ww, then ‘H does not halt.
o if D rejects ww, then H accepts.

Notice that
H accepts "H' <= D rejects "H'"H' <= H does not accept "H'.
Or to say it differently
H(H) = D(HH) = H(H) 1.

To see things slightly differently, since the machine H only stops when it accepts we can
reformulate the contradiction in

H(H) L= H(H) 1.

2.6 Some Other Undecidable Problems

Proposition 6.1

The following language is Turing recognizable but not decidable:

{"M'we{0,1}* | M(w) |}.
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Proof of Proposition E

By making use of any universal Turing machine, it is easy to check that this language
is Turing recognizable. Towards a contradiction we assume it also decidable, hence there
exists a Decider D that decides it. From D we build another decider D’ that decides

{r/\/ljw € {0,1}* | M(w) l%}
on input "M'w, D’ runs as D until right before D halts.

o if D halts and rejects, then D’ halts and rejects as well,

o if D halts and accepts, then D’ runs any universal Turing machine I/ on "M 'w again,
and then:

e if U halts and rejects, D’ halts and rejects, and
e if I/ halts and accepts, D’ halts and accepts.

Proposition 6.2

The following language is Turing recognizable but not decidable:

{IM e {0,1}" [ M(e) |}
Proof of Proposition @

The fact this language is Turing recognizable is immediate. It is not recursive because
otherwise,

{{Mw e {0,1}" [ M(w) I}

would be decidable as well, contradicting Proposition (6.1
Indeed, towards a contradiction, we assume that there exists some decider D that decides

{M e {0,1}* [ M(e) |}
and build another decider D’ that decides
{"M'we {0,1}* | M(w) |}.

On input "M'w, D’ first computes the code "M’" of a Turing machine M’ which works as
follows on the empty word:
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(1) M’ first writes the word w, then moves its head back to the leftmost cell and places
itself in the initial state of the machine D.

(2) Then, M’ works exactly as M.

Proposition 6.3

For any language L, we have the following equivalence:

both L and L' are recursively enumerable <= L is recursive.

Proof of Proposition E

(<) is immediate.

(=) From M that recognizes L and M that recognizes L' , we build a decider D as
follows, on input w repeatedly for ¢ = 1,2,3,... it recursively simulates first M on
w for ¢ many steps, and in case M has not stopped, simulates M{ on w for ¢ many
steps, where M is the same Turing machine as Mg except that guee. and grej. are

swapped.
O
Corollary 6.1
The following languages are not recursively enumerable:
(1) {0, 1}\{"M"w e {0, 1}* | M(w) & (4) {'M'we {0,1}* | M(w) £ or M(w) 1}
(2) {0, 1}\{"M'w e {0,1}* | M(w) | } (5) {M'we{0,1}* | M(w) 1 }.
(3) {0, 1}\{"M" € {0,1}* [ M(e) | } (6) {"M €{0,1}* [ M(e) 1 }.

Proof of Corollary E

Immediate consequences of Propositions and
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Proposition 6.4

The following problem is not decidable:

{"M'w € {0,1}* | the computation of M on w uses all non-halting states}.

Proof of Proposition E

Left as an exercise. O

Rice’s Theorem 6.1

If C is any class of Turing-recognizable languages that is neither the whole class of Turing-
recognizable languages nor the empty set, then the following language is not decidable.

(M € {0,1}* | LM) € C).

In other words, if C is a non-empty proper class of Turing-recognizable languages, then the prob-
lem of determining whether the language of a Turing machine belongs to the class is undecidable.

Notice that when C is the empty set, then this problem is obviously decidable since
{{M e{0,1}" | LM) e T} = .

The same holds when C is the whole class of Turing-recognizable languages, checking whether
the language recognized by a Turing machine belongs to C in this case is trivial.

Proof of Rice’s Theorem:

The assumption that C is any class of Turing-recognizable languages that is neither the
whole class of Turing-recognizable languages nor the empty set yields that there exist one
Turing machine

o M, such that £(M,,) € C, and
0 Myt such that L(Mys) ¢ C.

Towards a contradiction, we assume that there exists some decider D (e Which decides
membership in C, namely:

{"M"e{0,1}* | LM) € C}.
By making use of D, (,)ec we build another decider D (), that decides the halting problem
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on empty tape, namely:

{IM e {0, 1} [ M(e) I}
For this, we distinguish between ¢ € C and &J ¢ C.
(1) If & ¢ C, the decider D (), on input "M’ computes "M’ the code of a machine M’

which works the following way: on input w, M’ stores the input w and runs as M
on the empty tape the following way:

o if M(g) 1, then M’ will not stop, so that we have M’ (w) 1

o if M(g) |, right before M reaches an halting configuration, M’ erases the whole
working tape, writes the word w back as input, and starts now working exactly
as M;,, on the input w.

5 5

We notice that if M(g) |, then M'(w) |8 <= M, (w) 2

So, we have
o if M(e) |, then L(M') = L(M;,) € C
o if M(g) 1, then LM') = & ¢C.

Finally, after on the input "M" the decider D (), has computed the code of M
it just runs D (uee 0N the input "M’ to get the result it wants.

(2) If & € C, the construction is as above replacing M,,, with M. This time, on input
M:

o if M(g) |, then LM') = L(Mout) ¢ C
o if M(e) 1, then LM') = e C.

So that the decider D (), just runs D,y ec on the input "M"', swapping the answers
yes/no to get the result it wants.

Therefore, in both cases, the halting problem on empty string becomes decidable. A con-
tradiction.
O

Corollary 6.2

One cannot decide whether
(1) the language recognized by a TM is also recognized by an automaton;

(2) the language recognized by a TM is not recognized by any automaton;
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3) the language recognized by a TM contains at least one word;

(
(4) the language recognized by a TM contains at least three words;
(5) the language recognized by a TM contains all finite words.

(6) the language recognized by a TM contains exactly all finite words of length < 7.
(7) the language recognized by a TM contains exactly all finite words of length > 7.
(

)
)
)
)
)
)

8) the language recognized by a TM contains infinitely many words.

Proof of Corollary @

Left as an exercise.

2.6.1 The Post Correspondence Problem

Imagine you are given a finite set of dominos of the form P = { [%] liel } where u;, v; € 3*.

For instance:
Pl e LS e Ll L L) L
- bal’| ca |’L a 1'Lacccl Lacl’ |ab| Lecl’ bbb | (-
The question is then whether there exists a non-empty sequence (repetitions of dominos are
accepted!)
i1 | R e
Vi Uiy Viy Vig_1 Uiy,

Uy * Ujg ~ - - " Ugy,_q " Ujy, = Vi~ Vi oo v * Vg * Vg

such that

Such a sequence is called a match.

For instance:
accal Tl ¢ a b | . . accacab
[ ] [ ] [—] — | is a match since we get

a ccel Lacl | ab accacab

Post Correspondence Problem.
It is undecidable, given any instance P = { [%] | i€ I} of the Post Correspondence Problem,

to determine whether there exists a match or not.
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Proof of Post Correspondence Problem:

See exercises sheet or Sipser’s “Introduction to the Theory of Computation” [52, pp. 227—
233]. O

The whole idea of the proof consists in reducing the Halting Problem to this one. So that if we
were able to decide the Post Correspondence Problem, then we could as well decide the Halting
Problem. Since we know that the halting problem is undecidable, this implies that the Post
Correspondence Problem is also undecidable.

2.7 Turing Machine with Oracle

A Turing machine with an oracle is one finite object (a Turing machine suitable for any oracle:
an almost usual 2-tape Turing Machine) plus one infinite object so that this Turing machine
can have access to an infinite amount of information — something a usual Turing machine never
does.

Definition 7.1

(1) An oracle is any subset O < N.

(2) An oracle-compatible- Turing machine (o-c-TM) is a 2-tape Turing machine similar to
any 2-tape Turing machine, except that it only reads but never writes on tape (2):

0= (Q7 27 Fv 57 405 Gacc.» Q’r’ej.>

(3) An oracle-compatible-Turing machine O equipped with the oracle O, on input word
w € ¥* (in short an oracle TM OY on word w € ¥*) is nothing but the Turing
machine O whose initial configuration is

(qow : qu@)
) ©)

where xg € {0,1}* is the infinite word

xo(0)xo(1)xo(2)...... xom)xom+1)............
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defined by
1 i neO
Xo(n) = and
0 if ne¢Q.
O 1101fr§11uu .
@ 000000000;1?0000001000777""".

This means that on tape (2) the whole characteristic function of the oracle is already available
once the machine starts. So that the machine is granted access to all of this ”external” infor-
mation: it knows which integers belong to @ and which integers do not. For instance, in case O
is the set of all integers n such that:

(1) nreads “ 1"’M'w ” in the decimal numeral system,
(2) M(w) {;

then OP may be able to decide the Halting Problem. Of course this does not lead to a contra-
diction since there is no chance that such a Turing machine ﬁ ever sees its own code onto tape
(2) (although the code of O — or the code of an equivalent Turing machine — does show on (2)).

Example 7.1

Let O € N be the set of all the codes of Turing machines that halt on the empty input:

0= (TM"eN| M) L

We describe an oracle-compatible-TM O that, once equipped with the oracle O, decides
the language

{{M e {0,1}* [ M(e) |}
The machine O works this way:

(1) on input w € {0,1}*, the Turing machine O checks whether w is the code of a Turing
machine. If it is not the case it rejects right away; otherwise,

Swe are talking about @° and not just O!
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ﬁQ . .
(2) it computes n = 1" M"", then checks on tape (2) whether yg(n) = 1 — in which case
it accepts — or xg(n) = 0 — in which case it rejects.

Notation 7.1

o Notice that the mapping f: {0,1}* b, N is a bijection.
w o Tw -1

For any word w we write "w’ for f(w), and for any integer k we write k" for f~1(k).

For instance "0010" = 10010° — 1 = 18 — 1 = 17, and "12" = 101 since 101" — 1 =
8+4+1)—1=13—1=12.

o Given any language L < {0, 1}*, we write O, < N for the set
@Lz{rw‘eNmeL}:{kem rlfeL}.
o Given any subset O € N, we write L) < {0, 1}* for the language

Lio) = {w € {0,1}* | w' e @} - {k € {0,1)* | ke @}.

So Oy, is the oracle associated with the language L, and L(q) is the language associated with
the oracle O. (For instance, the oracle for the empty language is the empty set: Og = .)

So, we have

(1) a coding for the Turing machines:

* - *
{ Y/ ) ) ) Y ) Ay I 777 I ) ) ) ) 7{7 2\ ) } {071}

(2) a coding for the words:
{0,1}* — N
w —
(3) a coding for the integers:
N Y g, 1)
kE — k'

"w? stands for the integer n that, once written in base 2, yields the word w
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We will use the notation "M" instead of " "M" " which means we consider first the word in {0, 1}*
that codes the Turing machine M, then the integer that codes this word. All we need is that
"M is an integer that codes the Turing machine M, and two different machines are coded with
two different integer (M # M’ = "M" # "M""). Also that the — coding and deciphering —
operations "M" v "M" and "M" v "M’ can be performed by Turing machines.

Proposition 7.1

Given any recursive language L < {0, 1}*, and any oracle Turing machine OOc.

o L(O%) is recursively enumerable, and moreover

o if O®% is an oracle Decider@ then £(O°r) is recursive.

“meaning that @°Z halts on every input.

Proof of Proposition IE

Left as an exercise.

Definition 7.2: Turing Reducibility

Given any oracles Q4,0 € N,
we write
0a <7 Op

and say Q4 is “Turing reducible” to Op, if there exists an o-c-TM O®8 which, starting on
the empty tape, computes xo,-

Proposition 7.2

Given any Q4,0p < N, the following are equivalent:

(1) Q4 is Turing reducible to Op,

(2) for every o-c-TM M, there exists an o-c-TM A such that £ (M%4) = £ (N05).

Moreover, in case M®4 is an oracle Decider, we can make sure that NOZ is an oracle
Decider too.
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Proof of Proposition IE
Left as an easy exercise.
O

Notation 7.2

Given any Q4,0p € N, we write

0 Oy <7 Op if Q4 is Turing reducible to Op;

0 Oyp=r0p if O4 <7 Op and Op <7 Qy;

0 Oq <7 Op if O4 <7 Op but O €7 Q4.

Notice that =p is an equivalence relation:
o 04=r04

o Og=r Op <= Op =1 Oy;

Oa=7r0p

o and = 04 =7 O¢
Op =r O¢

Example 7.2

Given any language L < {0, 1}*,
1
2

4

(1)

2) @

(3) L is recursive <= O =r ,
(4) L is not recursive <= J < Or.
(5)

5) O, =r @,;(@ ) holds since we have Oy,

since

= (O)L(@L)'

04 <7 Op
and

Op <1 O¢

(since Oa <7 @A);

= 04 <7 O¢ |
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Definition 7.3: Turing Degree

Given any oracle Q4 < N, the equivalence class
[Oal=r = {0 = N|Op =r 04}

is called a Turing degree.

The ordering <t on oracles induces an ordering < on the set TID of all Turing degrees: given
any Turing degrees d, e € TD,

d<e < A<y B holds for some oracle A € d and some oracle B € e

or equivalently

d<e < A<y B holds for all oracleA € d and all oracle B € e

As usual, we make use of the notation

d<e < d<e butefd

Example 7.3

We list a few basic facts about Turing degrees.

(1) Given any d € TD
card(d) = Ng.

The reason is that there are countably many Turing machines and always infinitely
many oracle that are Turing equivalent: for instance, given any A € N and any k € N
form

A ={2n|ne A} u {2k + 1}
We have both A =p Ay (any k € N) and Ay # A; (any k # [ € N).
(2) Given any set A < N the set
{BSN|B<r A}
is countable for the reason that there are only countably many Turing machines.

(3) Given any d € TD
card{e € TD | e < d} < Ro.

(4) Given any d € TD
card{e € TD | d < e} = 2.
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To see this, observe that if
d=[A]=

=T

then given any B < N the set
A®B={2n|neAlu{2n+1|ne B}

satisfies
A <r A @ B.

Moreover,
card{A(—BB | B < N} = 9o,

Since every Turing degree is countable, we obtain
card ({A@B | B< N} /ET> — 9%
which gives the result.

(5) As Sacks showed in 1961 — see [28] p. 157 and also |49, [50] — the ordering (TD, <)
does not have a familiar shape since every countable partial ordering (P, <) can be
embedded into (TD, <).

Proposition 7.3

(1) {£o) = (0,1} |0 <7 B} = Rec.
2) {L < {0,1}* | O < Halt} > RE.
(the inclusion is strict since both ]H[(Cllt = H,; and E(Hclt) ¢ Rec. hold)
(3) {E(@) < {0,1)* | O <p Halt} > RE.
Where

o Rec. is the class of all recursive (i.e. decidable) languages

o R.E. is the class of all recursively enumerable (i.e. Turign recognizable) languages
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o Hyy; stands for the set of codes of Turing machines that halt on the empty input:

Hay @{r/\/re{o,l}* | M)}

= {MeN | M@ |}

Proof of Proposition IE

Left as an exercise.
O

We now introduce an operation called the “jump” which shows that there is no maximum Turing
degree, since from any given oracle A it provides us with some oracle A" (“the jump of A”)
which satisfies A <7 A’.

Definition 7.4: Jump operator

Given any subset A € N, the jump of A (denoted A') is
ro_
4 = (O){r./\/PE{O,l}* | M an o-c-TM, MA(E)l}

= {M'eN | Me) |}
Example 7.4
Ho: =7 &'

Proposition 7.4

For every A < N the set
AT ={as((M","w") eN | M*A(w) |}

satisfies
A =p AT

See page for the definition of ag : N x N LN

(z,y)

N

(J:+y)-(2m+y+1) +y.
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Proof of Proposition IE

Left as an easy exercise.

Proposition 7.5

For every A € N,

A <T Al.
Proof of Proposition E

We decompose A <7 A’ into first A < A’, then A’ £ A.

(A <1 A’) We need to find an o-c-TM M that outputs x4 while being equipped with the
oracle A’. To compute x 4(n) this machine proceeds as follows: it computes the code

‘N,' of any o-c-TM N, that, no matter what its input w is, proceeds as follows when
it is equipped with the oracle O:
o if xp(n) = 1, then N, (w) |;
o if xp(n) = 0, then Ny, (w) 1.
Then M4 outputs

xa(n) = xa(‘\Nn').
(A’ £t A) Towards a contradiction, we assume that A’ <7 A holds. Since A

=7 A we

have A" <7 A holds as well. So, there exists an o-c-TM N such that A computes
XAt

We build an o-c-TM # such that H” on every input w € {0, 1}*:

(1) computes k = az('w', "w"), then

(2) by making use of N as a subprogram, computes the value y 4+ (k), then
o if x 41 (k) = 0, then HA(w) |;

o if x 41 (k) = 1, then H*(w) 1.

We obtain the following contradiction:

HA(rH‘I) l, — a2(rH17rH1) ¢AT — HA(r%-l)T
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Mg M MG MG M Mg M
Mol o 1 1 0 10 0
M| 1 1 1 0 0 0 0
My 10 1 0 0 0 1
Mgl 0 0o 1 0 1 0 0
M|l o 1 0 1 1 1 0
Myl 1 1 0 0 0 0 0
M1 0 0 0 1 1 1

Figure 2.1: Diagonal argument: swap 0’s and 1’s on the diagonal.

Below we show a picture that illustrates this diagonal argument that we have just used.

If (M;)ien is a enumeration of all the oracle-compatible Turing machines, then we make sure
that the machine H we build is none of them by ensuring that for each ¢ € N, there exists an
input word (its own code "M;") such that #* has a completely different behaviour than M
on this word: for this we swap 0’s and 1’s on the diagonal: 0 v~ 1 and 1 v~ 0.

Corollary 7.1

The following strict ordering between jumps is satisfied:

n n+1 w w+1

/ " "ot "ot ”"ee- "ot
®<T@ <T@ <T...<T® <T@ <T...<T@ <T® <7 ....

where
k= (n+m)(121+m+1) +m
——
ke g" W — and

n

n /
me @

Proof of Corollary Ii

n w
—
I

——
Let us use the notations @™ for " ' and @@ for g5 .
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The only thing one needs to prove is that
g <, g
holds for every integer n.

%) (n) <t g @) is almost immediate, since it is straightforward to build an o-c-TM O,, that
outputs X when it is equipped with the oracle ¢J @) gince

Xgm (M) = X g <(n i m)(T;JF m+1) + m) .

%) () S\ %) () it is enough to proceed by contradiction and show that

g(w) <r @(n)

would imply

Iterating the jump operator into the transfinite

Notice that if for every limit countable ordinal A we fix some bijection

fi: N > AxN
k' — (a,m)

we may then define an uncountable sequence of jumps (@ (O‘))OKW1 by ordinal induction:
o PO =g
o glatl) = (@)
o FW ={fi(a,m)eN|me F}.
It is immediate to see that the sequence (@ (O‘))CKW1 is strictly <p-increasing, or in other words
7@ <5 )

holds for every a < 8 < w;.
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Chapter 3

Recursive Functions

The whole chapter is highly inspired by René Cori and Daniel Lascar book’s book: “Math-
ematical Logic, Part 2, Recursion Theory, Gdédel Theorems, Set Theory, Model Theory” [12].

Recursive functions are functions from NP to N. We will show that they have a strong relation
with the Turing computable ones.

We define the set of recursive functions by induction. For this purpose, for any integer p, we
denote by NV) the set of all mappings of the form N — N. Notice that NP is a notation for
the set of all mappings {i € N | i < p} — N. When p = 0, the set {i € N | i < p} becomes
{i e N|i< 0} = Thus the set N’ only contains one element: the empty function whose
graph is . Therefore the set of all mappings of the form N® — N contains all mappings that
assign one integer to the empty function:

neN } .

NO—>N={ fo gy — N
So, as may be expected, mappings in N (N°) are identified with elements of N.

g — n

3.1 Primitive Recursive Functions

Definition 1.1

projection: If i is any integer such that 1 < i < p holds, the i projection 7! is the
function of NV defined by

(@1, .., 1p) = x5

successor: S € NV is the successor function@
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composition: Given fi,..., f, € NO) and g e NN the composition h = g(f1,..., fn) €
N®) is defined by

h(zi,...,zp) :g(fl(xl,...,azp),...,fn(xl,...,xp))

We often make use of the notation @ for (z1,...,z),) so that for instance

g(f1(7)7 s 7fn(?))

stands for

g(fl(xl,...,:cp),...,fn(:vl,...,azp)).

Np+2)

recursion: Given g € N) and h e N( , there exists a unique f € N such that

for all @ € NP and y € N satisfies
(1) f(7,0) =g(T)
(2) f(Z,y+1)=h(Z,y, [(T,y))

We say f is defined by recursion on both g (for the initial step) and h (for the
successor steps).

*S(n)=n+1.

Definition 1.2

The set of primitive recursive (Prim. Rec.) functions is the least that
(1) contains:

(a) All constants N° — N (all 7 € N) st. (@) = — any i,p € N).
(b) All projections 7 (any p€ N, any 1 < i < p)
(c) The successor function S e NN,
(2) and is closed under
(a) composition

(b) recursion

We set up these functions in a hierarchy (R;,)nen:

(1) Ro is the set of all functions in|(1)(a)li(1)(b)|and |(1)(c).

(2) Rn+1 is the closurd? of R, under [(2)(a)] and [(2)(b)]
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Clearly
Prim. Rec. = U R,.

neN

“Rn+1 = Ry U {h obtained by composition on the basis of functions in R, } u {h obtained by induction
on the basis of functions in R, }.

Example 1.1

(1) Addition: (z,y) — x+y
‘We have:
r+0=2z
3.1
{x+(y+1):(:v+y)+l. &L

Formally:
add(z,0) = 7l (x)
add (z,y+1) = S(W% (z,y, add(a:,y))) (3.2)
= Sons (a;, v, add(x,y))

(2) Multiplication: (z,y) — x -y

We have 0_o
{i:(y_+1):x-y+x. (3.3)
Formally:
mult(z,0) = 0(z)
{ mult(z,y + 1) = add (77% (x, y, mult(zx, y))ﬂri]’ (a:, y, mult(x, y))) &4
(3) Exponentiation: x — n”
We have 01
{ el em 35
Formally:
exp,(0) =1
{ expnéx)+ 1) = mult (7?% (z, ezpn(aj)),n) )

(4) Factorial: z — z!
We have
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Formally:

fact(0) =1
fact(z + 1) = mult (71'% (z, fact(z)), S(TI‘% (x,fact(a:)))). (3:8)

Example 1.2

We define — € NOV) by

r-y = xz—y if v>y,
0 otherwise.

To show — € NO¥) belongs to Prim. Rec., we first show x — x =1 belongs to Prim. Rec.

0-1=
{(334-1);1:1‘ (3.9)
Formally:
0-1=0(x)
{ (x+1 —12#%(37,3:—1) (3.10)
r=-0==zx
{x;(y‘f‘l):(az;y);l (3.11)
Formally:
20 = nl(z)
{ r=(y+1)= (Wg(.’x,y,x%y))fl (3.12)

Definition 1.3

A set A € NP is primitive recursive (Prim. Rec.) if its characteristic function (x4 € N(W))
is primitive recursive.

Example 1.3

(1) The set & is Prim. Rec. since xg = 0 is Prim. Rec.
(2) The set N is Prim. Rec. since xy = 1 is Prim. Rec.

(3) The set <y= {(z,y) | x <y} is Prim. Rec. x<y(z,y) =1~ (1 = (y — z)).
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On computable and partial functions

Definition 1.4

(1) (domyg, f) is a partial function N° — N if f is a mapping domy — N where
domy < NP,

(2) (domy, f) is a total function NP — N if domy = NP holds.

We say that f is undefined on « — or f(z) is undefined — if = ¢ domy.

Notation 1.1
We write f € N(@omeN?) g (domy, f) is a partial function NP — N whose domain is dom .

Notice that given any two partial functions f, g € N(domeh?),

domy = domyg
f=9g < and
Vo f(z) = g(x).

Definition 1.5

A partial function f € N@mEN) ig “Tyring Computable” (TC) if there exists a Turing
machine M such that on input @ = (z1,...,zp):

(1) if f(7) is not defined, then M(T) 1;
(2) if (27) € domy, M(@) | with f(Z) written on its tape.

Proposition 1.1

Given any partial function f e N(domeN?)

[ is Turing Computable <= Gy = {(Z, f(z)) | @ € domy} is Turing Recognizable.
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fe N(NP) fe N(dom;NP)

recursive rec. enum.
Gr < NPt I I

decidable Turing rec.

Figure 3.1: Relations between Turing computable functions and their graphs

Proof of Proposition IE

(=) From M that computes f it is immediate to build A that recognizes G¢. On input
(Z,y) it simulates M if M(T,y) |% it compares f(z) with y and if f(z) = y it

accepts, otherwise it rejects.

(<) From N that recognizes G, we build M that computes f as follows, on input @ re-
peatedly fori = 1,2,3, ... it recursively simulates N on (@, 0), (@, 1), (@, 2),...,(7,1)
for ¢ many steps. If N accepts (7, n), then M prints out the value n.

Corollary 1.1

Given any function f: NP — N,

O]

[ is both total and Turing Computable = Gy is recursive (decidable).

Proof of Corollary IE

Left as an immediate exercise.

We notice tha following:

All functions in Ry are total and Turing computable. By induction on n, it is easy to show that

all functions in R,, are also total and Turing computable. Therefore

o All Prim. Rec. functions are total and Turing computable.
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o All graphs of Prim. Rec. functions are recursive

Even though the class of all Prim. Rec. functions is included in the class of total and turing
computable functions, the inverse inclusion does not hold|

3.2 Variable Substitution

Proposition 2.1: Prim. Rec. closed under variable substitution

If f e NO) is Prim. Rec., then given any o : {1,...,p} — {1,...,p}, the function
g € NO) defined by

g(l'l, 3 'axp) = f(xa(l)a s 7$U(p))

is also Prim. Rec.

Proof of Proposition E

We have

Proposition 2.2

If A< N"is Prim. Rec. and fi,. .., fr € NV) are Prim. Rec. then
{Z eN [ (fu(@),..., fu(T)) € A}

is Prim. Rec.
Proof of Proposition IE

Set B={7T eNP | (f1i(®@),..., fn(T)) € A}. We have

(@) = Xa(H(@), o, ful@)).

lsee exercise on the Ackermann function A € N defined by

n+1 1f m:07
A(m,n) =< A(m—1,1) if m>0andn =0,
A(m—1,A(m,n—1)) if m>0andn > 0.

A(m,n) is fast growing ; for instance 2 - 10'°7%® < A(4,2) < 310978,
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Example 2.1

If f,g € NO) are Prim. Rec., then the following sets are also Prim. Rec.:
) {7 | f(Z) > 9(T)} 2) {7 [ f(T) = 9(T)} @) {7 | f(T) <9(T)}-

Proposition 2.3

If A, B < NP are Prim. Rec. then AoB, An B, AN B, AAB and NP~ A are all Prim. Rec.

Proof of Proposition @

XauvB = 1= (1= (xa+xn))

XAnB = XA XB

xaB = xa-(1=xs)

XAAB = (1;XA'XB)‘(1; ((1;XA)'(1;XB))>
X Ae =1-=xa.

Proposition 2.4: Case study

If fi,..., far1 € NO)and Ay, ..., A, € NP are all Prim. Rec., then g € N&) defined by:

( f1 (?) Zf ? € A1
fQ(?) if e AQ AN Al
f3(7) ’if T e Ag AN (Al ) AQ)

fl(?) if T’EAi\(AluAgu...uAi_l)

L fn-&-l(?) Zf ? ¢ (Al U... U An)

is also Prim. Rec.
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Proof of Proposition IE
9="r XA+ 2 Xagaa) + oo+ fag X(ANAW...UA“)C' O
Corollary 2.1
sup(z1,...,xy,) and inf(xq,...,x,) are Prim. Rec.
Proof of Corollary E
Left as an exercise. O
Proposition 2.5
fe N is Prim. Rec., then g, h € NV below are Prim. Rec.:
t=y
g(x17"'7xp7y> = Zf(x17"'7xp7t)7
t=0
t=y
h(zi,...,2p,y) = f(x1,...,2p,t).
t=0
Proof of Proposition IE
Left as an exercise (both are easily defined by recursion).
O

3.3 Bounded Minimisation and Bounded Quantification

Proposition 3.1: Bounded minimisation

If A< NPl is Prim. Rec., then f e NO™) defined below is also Prim. Rec.:

F(T2) - 0ifVi<z (@,t)¢ A,
"2V 70 the least t < z such that (7,t) € A otherwise.



82 EPFL Godel & Recursivity

f(Z,z) is denoted by ut < z (@,t) € A.

Proof of Proposition E

f is defined by:

y=z
f(7,2) if OXA(T’,y) >1
y:
y=z
1 f(@241) = {241 i X xa(Ty) =0and (F.z+1)e A
y=0
y=z+1
0 if > xa(@,y)=0
\ L y=0

Proposition 3.2: Prim. Rec. closed under bounded quantification

The set of all Prim. Rec. predicates is closed under bounded quantification: i.e., If A <
NP+l is Prim. Rec., then

o {(T,z): <z (7,t)e A} o {(@,z):Vt <z (Z,t)e A}

are both Prim. Rec.

Proof of Proposition @

Set

o B={(T,2):3t <z (T.t)e A, o C={(T,2):Vt <z (T,1)e A
We have

Omﬁw=Fﬂ*§mWW, om@@=ﬁm@w»
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Example 3.1

o {2n:n e N} is Prim. Rec. It is defined by recursion

{ X(0) 1
Xn+1) = 1=Xxw

o The mapping € N (x,y) — {w] defined below is Prim. Rec.:
Yy

[ﬂ — 0ify=0
Y z
= integer part of — otherwise.
)
Formally
[x} — 0ify=0
Y

= pwt<z y-(t+1)> 2z otherwise.

o {(x, y) | y divides :c} € Prim. Rec.:

w1 1)

o Prime = {x e N|x is a prime number} € Prim. Rec.:

z>1
and
x € Prime <— y=1
or
Vy<z Yy=2x
or
y does not divide .

\
o IT: N — N defined by I1 (n) = n + 1" prime number € Prim. Rec..

{H(O) — 2

II(n+1) pz < (IL(n)! +1) z>1I(n) and z € Prime.
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3.4 Coding Sequences of Integers

We define Prim. Rec. functions that allow to treat finite sequences of integers as integers.
Every sequence (z1,...,zp,) will be “coded” by a single integer oy (z1,...,xp). And from this
single integer ay(z1, . ..,2p) one will be able to recover the elements of the original sequence by
having Prim. Rec. functions ﬁ; that satisfy

By (ozp(ccl, . ,xp)) = ;.

Proposition 4.1

For every non-zero p € N there exists Prim. Rec. functions ,8;, g, ..., 0h € NN and ap €

N®) such that -
ap : NP N

and

a;l(x) = (B;(a:), . ,B]’;(a:)).

Proof of Proposition IE

We start by defining a; = 5} = id. Then we move on to

(z+y) - (z+y+1)
2

Q2 (JI, y) =
This is obtained by looking at the following picture and noticing that

(1) a(x,y) = ag(w +y,0) +y, and

(2) a(z+y,0) = 1 + 2 + -+ (z+4vy)
1 2 r+y
= ;( + o+ - - - = )

T+y r+y—1 1
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We have
(1) Bi(n) =pr <n 3t<n ay(z,t)=n
(2) B3(n)=py<n 3FHt<n aty) =n

p—1  op p+1 . . ]
s Bptr1> Bpyr and B, by induction on p € N:

Then we define a1, B;H, ﬂgﬂ, ......
0 pi1(T1, .oy Ty Tpi1) = p (21, Tp1, Q2 (T, Tpi1))

1 _ §al.

© Bp+1 - Fp

2 _ Q2.
p+1 = Fp>

O
p—1 _ op—1,

° Bpr1 =5

o Bpi1 = B3 o By;

p+1l _ 2 D
© Ppt1 _/32 Oﬁp'
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Example 4.1

A different way of coding sequences of integers:

c(e) 1

c(zo,. .. @) = I(0)*F - II(1)™* .. T (p)™ .
From n € N \ {0} we recover the sequence (zy,...,zp) such that c¢(zo,...,zp) = n by
considering the Prim. Rec. function d € N®) which yields the exponents of the prime

numbers:
d(i,n) = px <n &) does not divide n.

3.5 Partial Recursive Functions

We recall that
1) (domy, f) is a partial function NP — N if f is a mapping domr — N where dom ¢ € NP.
f f )
(2) (domyg, f) is a total function NP — N if domy = NP holds.

We say that f is undefined on x — or f(z) is undefined — if « ¢ domys. We use the notation
f € N(@omEN) 6 sionify that (dom £, f) is a partial function N — N whose domain is domy.
Notice that for any two partial functions f, g € N(domeN).
domy = domy
f =g holds < and
v f(z) = g(x).

Definition 5.1: Composition

Given fi,..., fn € NUomEN") and g e N(dom<NY) “the composition h = g(fi1,. .., fn) € NOW)
is

( T ¢ ﬂ domy,
1<i<n

h(T) is undefined iff < or otherwise

L (f1(Z),- ., ful@)) ¢ domy.

[ W(T) is defined otherwise and h(T) = g(f1(Z),..., fo(T)).

:g(fl(xl,...,ajp),...,fn(ml,...,xp))
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Definition 5.2: Recursion

Given g € N(@omEN) anq p e N(AomEN"2) thore exists a unique f € N@mMENY) «ych that
for all @ € NP and y € N:

(1)
f(7,0) is undefined if @ ¢ domyg
and
f(Z,0) is defined otherwise with f(@,0) = g(°T).
(2)
(7, y) ¢ domy
f(Z,y + 1) is undefined if or

(77 Y, f(?,y)) ¢ domh.

and

otherwise f(Z,y + 1) is defined and f(T,y+ 1) = h(Z,y, f(Z,y)).

Definition 5.3: Minimization

Given f € N(omEN"") e define g e N(domeN?)

9(@)=py f(Z,y)=0.

Notice that
f(@, 2) is defined!

Vz <y and
9(T) =y = A f(@,2)>0

and

\ f(7=y>20'

Definition 5.4: Partial recursive functions

The set of partial recursive (Part. Rec.) functions is the least that

(1) contains:
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(a) All constants N° — N (all 1 € N¥) st. (@) =4 — any i,p € N).
(b) All projections 7 (any p€ N, any 1 < i < p)

(c) The successor function S e NN,

(2) and is closed under

(a) composition
(b) recursion

(¢) minimisation.

Our next goal is to show that a function f is in Part. Rec. if and only if it is Turing computable.
One direction is easy, the other one is more involved. One side effect of our proof will show that
every partial recursive function can be obtained by applying the minimisation at most once.

Lemma 5.1

Every partial recursive function is Turing computable.

Proof of Lemma Ii

We need to show that given any p € N\ {0} and any f € N(domEN?) there exists some
Turing machine M that computes f. This means that on input (ni,...,n,) it stops in
configuration ggec. f(n1,...,np) if (n1,...,n,) € domy, and it never stops otherwise. Of
course, we need to fix a certain representation of both integers and finite sequence of
integers. For simplicity, let us say that the integers are represented in base-ten and the
sequences as (ni,...,ny) so that the input alphabet is

E: {O’ 9 ) ) ) i 9 77 ’ Y I I }'

So, for instance a Turing machine computes Add if on input word “(385,218)” it returns
the word “603”.
We do the proof by induction on the number of operation among

o composition o recursion o minimisation

that are necessary to obtain f € N(@mEN) on the basis of

o all constants o all projections o the successor function.
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(1) It is quite obvious that

o if f e NdemEN) i constant, then there exists some basic Turing machine that
computes it.

o Every projection 7¥ (any 1 < i < p) is also trivially computable.

o The successor function is clearly computable as well.

(a) Assume f1,..., fn € N(domEN?) are computed respectively by My, ..., My, and

g € N(om<EN") s computed by M,. Then f = g(f1,. .., fn) € NO) is computed
by M which works as follows:

on input T = (ny,...,np):

successively for each i:=1,...,n the machine M simulates My, on input
T, if My, (7) i§ with some output m; it stores m;.

(In case all simulations of machines My, ..., My, do stop) M finally simulates

Mg on input (mq,...,my).

It is clear that if either

(0) @ ¢ () domy,  or B) (Ai(@),- - Ja(@)) ¢ dom,,

1<i<n

then M () 1. In the opposite case, M (@) ﬁ%f with the right answer.

(b) Assume g € N(omeN?) and b e N(@omeN"*2) a0 computed respectively by M,

and Myp. Then f defined by recursion:
(A) f(Z,0) =g(T)
(B) f(T,y+1)=h(T,y, f(T,y))
is computed by M which works as follows:
o on input (7, 0) it simply simulates M, on input @, and
o oninput (@, n+1) M/ first simulates M, on input @ which giveﬂ f(@,0).
Then
recursively for i:=0,...,n M; simulates M;, on (7,4, f(Z,i)) which
yieldsﬂ f(Z,i+1).
It is clear that My brings the result if and only if every step f(7,i) (i :=
0,...,n+ 1) is defined. Otherwise it simply never stops.

(c) Assume g € N(domeN+T) g computed by M,. We design M that on input 2

computes

ry 9(Z,y)=0.

89
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set i:=0 M/ simulates M, on input (7,7). If M, stops and outputs the
value of g(7, 1),
o if g(7,i) = 0 M stops and outputs 4,
o if g(@,1) # 0, My starts over again with ¢ := 7 + 1.
Notice that M stops and outputs n = py ¢(2,y) = 0 if and only if
oVi<n (7,i)e domg,
oVi<n g(@,i)>0and
o g(7,n)=0.

“in case My(T) fg
%n case /\/lh(7, i, f (T, z)) l%.

Lemma 5.2

Every Turing computable partial function f e N(@omEN) is Part. Rec.

Proof of Lemma @

We show an even stronger result: given any Turing Machine M and any recursive coding
of words on the tape alphabet I' we show that the partial function X* — I'* which maps
v € ¥* to w € I'* if and only if the Turing machine from the initial configuration ggv stops
in some configuration wgqae.. w1 with wow; = w is partial recursive in the code. This means
the function f’ € N(@mENY) defined by

f'(code(v)) is undefined if M(v) 1 or M(v) [
f/(code(v)) = code(wow) if M i§ n config. WoGaee.W1.
We first choose a coding of the configurations of M: We assume
oX={l,....,k—1}and I' ={0,...,k — 1} with & > 1 and necessarily 0 = L.

o Q= {qo,---,qm} with qo, q1, g2 being respectively the initial state, the rejecting state
and the accepting state.

The coding of a word w = ag . .. a, that we choose is

‘ag...a, = Z a; - k"

0<i<n
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This coding is not injective (this will not matter for our purpose) for any two word which
differ by the tailing blanks in their prefix will have the same encoding;:

r hl r hl

ag...an = Gg...QapL0 .

But on the other hand, this encoding is surjective.
A configuration wgq,w; of the Turing machine will be coded by

r a r a r a
Woqrwy = 044(7“7 wo , W1 7|w0|)~

For instance, the initial configuration of the Turing machine with input w is:

Il

Q

W~
/—\
=
-

S
-
a)
SN—

r al
qow

2

(( w' (" ;} +1)) ( w' (" 1217 T+1) +1) ) ( (rw1(r;}1+1)) (rw1(r72ﬂ1+1)+1) +1>

To say that w is an input word is to say that w € ¥* (we will identify words of the form
w € X* with words of the form w L ... U since our coding will not be able to distinguish
thenﬂ and also because the input word really is the infinite word w ... 1 ...).

So we see that a word w = ag...a, € I'* is an input word if for no i < n we have both
a; = U and a;41 # w. This means that "ag...a," = ag-k° 4+ a1 - k' + ... + a, - k" satisfies
a; =0=a;41 =0 (any i <n). With our coding, we recover the coefficient a; as

‘ag...an' | ‘ag ... ay’
o [ = (5] ).

Therefore the set Input,, of all the codes of input words of M is Prim. Rec.:

) = 1 v (3] (] ) -0 =[] = (] )

= 0 otherwise

Since the coding of words that we choose is surjective, it comes that a configuration C is
an initial configuration if and only if there exists m € Input,,

m(m+1)) (m(m+1) m(m+1)\ (m(m+1)
(L) () | )
= .

2 2

2
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Therefore the set Init,, of all the codes of initial configurations of M is Prim. Rec.

1 if dm <c (anputM(m) =1 A ay(0,0,m,0) = c),

X Initpq (C) = {

0 otherwise.

We now describe the transition from a given configuration C' to the next configuration C’
(C = ("), in other words, we analyse the we obtain the code of C’ on the basis of both the
code of C' and the transition function §.

A transition yields a move of the head either to the right or to the left: §(¢.,a;) = (¢, ay, R)
or 6(qr,a;) = (q,ay,L). We need to consider differently these two forms, together with
differentiating also whether the head can or cannot move to the left when the transition
function says sdﬂ

When §(qr,a1) = (qw,ar, R), we have C = C’ is wog, w1 = w(gw} with

(1) wy = woay (2) Jwjl =1+ |wol (3) qu) = w;.

so that

(1) "wp' = "wo’ + 1 - Kol = BF(C) + 1 A
(2) |wp| = lwol +1=p3("C") + 1

62(0‘)}

(3) aqyw} = w; so that "w}' = { -

So, we obtain:

Bi(C) =r

and

i
e = (i | 2E) -1

then

3/
O =y <7"’, BCT) 1 KACO), [54(0)], ﬁ;‘;(r(f)ﬂ).
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When 6(qy,a;) = (qy,ay, L), there are two different cases depending on whether the head

can move to the left or not.

if wo = &, then we have C' = C’ is wog,w1 = w{g-w} with
(1) wy=¢
(2) fwpl = |wo| = [e]
(3) w) = apv and w; = v for some word v.
So that we get

So, all in all we obtain:

( pi(c) =r
and
3/
i 1 aeen = (k| 262 -
and
\ pi(c) =0
then

3 rC‘l
C" = ay (r’, 0, I'+ [64(k )] - k, 0) .
if wo # ¢, then we have C' = C' is wog,w; = w(gw)| with

(1) wha; = wo (3) wi = apw;.

(2) |wol = |wol =1

so that
2 rC‘l) PP
1) "Wl = B2(TC) - Bil .k(ﬂ((}) 1)
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(2) |w| = B1("C") =1
(3) "wi'=U+83("C") k.
So, we have found:

Bi(Ch) =r

and
3/
i | ooy = (e | L) =] e

and

Bi('C) # 0

"= ( ﬂicc‘)*[k(fi(gllﬂ"“(ﬁﬁ(r““;”, U+ BICT) -k, 62(0‘)“)'

To wrap up everything that we did so far, we recursively define a mapping f : N> — N
such that if n codes a word on ¥ —ie., n = "w' for some w € £* — then f(n,t) = "Cy+'
where (), ; stands for the configuration that the Turing machine reaches after t-many steps
from the initial configuration gow.

Since the machine stops if it reaches an accepting or a rejecting configuration, we will simply
assume that in any of these two cases the configuration of the Turing machines remains the
same: if C,; is either an accepting or a rejecting configuration, then Cj, 14, = Cy; holds
for every x € N.

We set §7, and dg are the two following finite — hence Prim. Rec. — subsets of N4

5y = {(r,l,r’,l')e{0,...m}><{0.../<:—1}x{O,...m}x{0...k—1} | 3(r 1) = (r',z/,L)}
and

Sp = {(r,l,r',l')E{O,...m}x{()...k:—l}x{O,...m}X{O...k—l} | 8(r,1) = (r’,l’,R)}

For our convenience we assume that I' = ¥ U {11}, This way the mapping f : Nz_ —> N we
currently construct is total (f € NO)). For readability we use the notation k' for Bi(k)
(any ke N, i < 4).

initial case
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1 if  n¢ Input,,

f(n,0) = a4(0,0,n,0) if ne Input,,

successor case

f(n,t+1) =

f(n,t) if  f(n,t) = or f(n,t) =2

(S

—_—3 —3
LT 1k [@} f‘(n.wl) i <f<n,t>1., f(n,t)h(h[@]) ll)””‘

. o - ] )
v e[ o ,
font) =0
. . (f(n, 0, Fmo - (k» {ﬂTkt)jD o z’) 6L
g (7-’, b = L(J;((:f;)*l)] A R e OV Sl T e 1) if o
TmD 0

Notice that f e N (N*) is Prim. Rec. and that M(w) i:‘é if and only if there exists some ¢t € N
such that 83 (f("w',t)) = 2.
Moreover, in this case, we recover the code of the content of the tape w; from f("w',t) by

w = BL(f(w )+ kﬁi(f(rw1’t))'ﬁ(f(rwj?t))'

Finally, we only need to fix both a recursive representation of the natural numbers and
(2)| what it means for a machine to compute a partial function.

(1) we fix our coding of integers: every integer n is coded by the word 11...1. The
—

n
function

N — N

n =



96 EPFL Godel & Recursivity

such that 'n' = Z 1-k" (ie., is the code of the word 11...1) is Prim. Rec.:

<n n

-0
— 0k

. . . . f—/‘_\
(2) We only consider Turing machines that on any input words of the form 11...1, pro-

n

vided they reach an accepting configuration, they reach one of the form 11...1 ggcc.-

n/

We define the function fu, € N(@mENT) that M computes by:

ar(TL17...,T'L»,~)
. . . — . =
o fum(ni,...,n,) is undefined if on input 11...1 either M 1 or M [E;
ar(n1ye..,nr)
. . — g. .
o fu(ni,...,ny) =nifoninput 11...1 M |2in configuration 11...1 gaec..

n

Then the function leasty, € N(@"EN") that picks the minimum number of steps — if

any — the machine takes before reaching an accepting configuration when starting
from the initial one go 11...... 1 is defined by
-

ar(nlv--vn'r)
leastu(na,...,n.) = pt  Biof( 1) = 2.
It is undefined if the machine never halts or halts on the rejecting state.

At last, we are ready to provide the desired f,, € N(4mEN") \We make use of the fact
the position of the head in an accepting configuration indicates precisely the number
of 1’s there are on the tape:

fM(nlv"'anr):ﬁiof( ,leaStM(TLl,...,TLT)).

O]

“remember that this is the reason why we chose 0 for the coding of the blank symbol.
Ythis means whether or not the head is already in position 0 and the transition is of the form

5((17“3 a’l) = (qr’3 ayr, L)

Corollary 5.1

Every partial recursive function f € NV admits a construction that requires minimisation
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at most once.
Moreover, one has Vn;...Vn,Vk <f(n1,...,nr) =k «— Tt F(nl,...,nr,k,t)> where

F < N"*2 is Prim. Rec..

Proof of Corollary E

This is an immediate consequence of the whole proof of Lemma [5.2| since we proved that
every partial recursive function can be computed by a Turing machine whose function it
computes is fr, € NV defined by

fM(nh'"?nT):/BiOf( ’Mt ﬂiof( ’t):2>'

where all functions f € N(NQ), a, € NO), B € NN, Bi € NN, e NN and the constant
2 e NO) are Prim. Rec. as well as the equality relation.
O

Theorem 5.1

domcNF

For every k > 0 and every f e N( ) the following are equivalent

o fis Part. Rec.,

o f is Turing computable.

Proof of Theorem E

Follows immediately from Lemmas [5.1] and O

97
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