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Recursivity





Chapter 1

Towards Turing Machines

The whole chapter is highly inspired by Michael Sipser’s book: “Introduction to the Theory of

Computation” [52]. It is a dashing introduction to the notions of Finite Automata, PushDown
Automata, Turing Machines.

We also recommend “Introduction to automata theory, languages, and computation” by John E.
Hopcroft, Rajeev Motwani et Je!rey D. Ullman [34]; “Computational complexity” by Christos
H. Papadimitriou [43] and “A mathematical introduction to logic” by Herbert B. Enderton [21].

1.1 Deterministic Finite Automata

We will see that any finite automaton can be regarded as a rudimentary Turing machine: a
Turing machine that never writes anything and only goes one direction.

Definition 1.1: Deterministic Finite Automaton

A deterministic finite automaton (DFA) is a 5-tuple pQ, ”, ω, q0, F q, where

(1) Q is a finite set called the states,

(2) ” is a finite set called the alphabet,

(3) ω : Q ˆ ” !Ñ Q is the transition function,

(4) q0 P Q is the initial state, and

(5) F " Q is the set of accepting states.a

a
Accept states sometimes are called final states.

We denote by ”!ω (or equivalently by ”˚) the set of finite words on ” and by ε the empty
sequence.
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Example 1.1

q0 q1 q2

0

1

1

0

1

0

The DFA A “ pQ, ”, ω, q0, F q where

˝ Q “ tq0, q1, q2u;

˝ ” “ t0, 1u;

˝ q0 is the initial state;

˝ F “ tq1u.

˝ ωpq0, 0q “ q0
ωpq0, 1q “ q1
ωpq1, 0q “ q2
ωpq1, 1q “ q1
ωpq2, 0q “ q2
ωpq2, 1q “ q1

Example 1.2

q0 q1

0
1

1

0

The DFA B “ pQ, ”, ω, q0, F q where

˝ Q “ tq0, q1u;

˝ q0 is the initial state;

˝ ” “ t0, 1u;

˝ F “ tq1u. ˝ ωpq0, 0q “ q0
ωpq0, 1q “ q1
ωpq1, 0q “ q0
ωpq1, 1q “ q1
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Definition 1.2

A DFA A “ pQ, ”, ω, q0, F q on an alphabet ” accepts the word w P ”!ω if and only if

˝ either w “ ε (the empty sequence) and q0 P F

˝ or w “ xa0, . . . , any with each ai P ”, and there is a sequence of states r0, . . . , rn`1

such that:

‚ r0 “ q0

‚ @i # n, ωpri, aiq “ ri`1

‚ rn`1 P F .

Notation 1.1

Given any DFA A, the language recognized by A is

LpAq “ tw P ”!ω : w is accepted by Au .

LpAq denotes the language accepted by A.

Example 1.3

The DFA A1 below recognizes

LpA1q “ tw P ”!ω : w ends with the letter 1u .

q0 q1 q2

0

1

1

0

1

0

A DFA A1.
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Example 1.4

The DFA A2 below recognizes

LpA2q “ tw P ”!ω : w ends with the letter 1u .

q0 q1

0
1

1

0

A DFA A2.

Example 1.5

The DFA A below recognizes the language

LpAq “ tεu Y tw P ”!ω : w ends with the letter 1u .

q0 q1

0
1

1

0

A DFA A.
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Example 1.6

The DFA A below recognizes the language

LpAq “ H.

q5 q6 q7 q1

q4 q0 q2 q3

0

1

1 0

1
1 1

1

0
0

1

0

0

1

0 0

A DFA A.

Example 1.7

What is the language recognized by the DFA below ?

q0 q1 q2

0

1

1

0

0, 1

Definition 1.3

Any language recognized by some deterministic finite automata (DFA) is called regular.
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1.2 Nondeterministic Finite Automata

Given any alphabet ”, we both assume that ε R ” holds and write ”ε for ” Y tεu.

Definition 2.1

A nondeterministic finite automaton (NFA) is a 5-tuple pQ, ”, ω, q0, F q, where

(1) Q is a finite set of states,

(2) ” is a finite alphabet,

(3) ω : Q ˆ ”ε !Ñ PpQq is the transition function,

(4) q0 P Q is the initial state, and

(5) F " Q is the set of accepting states.

Example 2.1

q0

q1 q2

1
ε

0
0, 1

0

The NFA N “ pQ, ”, ω, q0, F q where

˝ Q “ tq0, q1, q2u;

˝ ” “ t0, 1u;

˝ q0 is the initial state;

˝ F “ tq0u.

˝ ωpq0, εq “ tq2u

ωpq0, 0q “ H

ωpq0, 1q “ tq1u

ωpq1, εq “ H

ωpq1, 0q “ tq1, q2u

ωpq1, 1q “ tq2u

ωpq2, εq “ H

ωpq2, 0q “ tq0u

ωpq2, 1q “ H
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Definition 2.2

Let N “ pQ, ”, ω, q0, F q be an NFA and w P ”!ω. We say that N accepts w if and only if

˝ either w “ ε the empty sequence and q0 P F

˝ or w can be written as w “ xa0, . . . , any with each ai P ”ε, and there is and a sequence
of states r0, . . . , rn`1 such that:

‚ r0 “ q0,

‚ @i # n ri`1 P ωpri, aiq,

‚ rn`1 P F .

Example 2.2

The NFA N below recognizes the language

LpN q “ tw P ”!ω : w ends with the letter 1u .

q0 q1

0,1

1

The NFA N

Example 2.3

The NFA N below recognizes the language LpN q “ H.
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q5 q6 q7 q1

q4 q0 q2 q3

0, 1
0, 1 1

0, 1
0, 1 0, 1

1

0
ε

1

0

0, 11

0, 1

0

1

An NFA N .

Example 2.4

What is the language recognized by the NFA N below ?

q0

q1 q2

1
ε

0
0, 1

0

The NFA N

Proposition 2.1

Every NFA has an equivalent DFA. i.e., given any NFA N there exists some DFA D such
that

LpN q “ LpDq.

Proof of Proposition 2.1:

Given any NFA N “ xQ, ”, ω, q0, F y, we build some DFA D “ xQ1, ”, ω1, q1
0, F

1
y that recog-

nizes the same language.

(1) Q1
“ PpQq
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(2) For S " Q and a P ” we set

ω1
pS, aq “ tqj P Q | Dq P S q

ε˚aε˚
!!!!Ñ qju

where q
ε˚aε˚
!!!!Ñ q1 stands for the existence of a path in the graph of N that goes

through exactly one edge labelled with ”a”, the others being labelled with ”ε”.

(3) q1
0 “ tq P Q | q0

ε˚
!Ñ qu

(4) F 1
“ tS " Q | S X F ‰ Hu.

Example 2.5

q0

q1 q2

1

ε

0
0, 1

0

The NFA N

tq0, q2u tq0u tq1u tq0, q1u

tq2u H tq1, q2u tq0, q1, q2u0, 1

0 1

01 0, 1

1

0

0

1

0

1

0

1

A DFA A equivalent to the above NFA N .
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H tq1u

tq2u tq0, q2u tq1, q2u tq0, q1, q2u

0, 1

01
1

0
0

1

0

1

0

1

A DFA A1 equivalent to the above DFA A.

q5 q1

q2 q0 q3 q4

0, 1

0
1

1

0

0

1

0

1

0

1

A DFA A2 equivalent to the above DFA A1.

q5q2q0

q1 q3 q4

0, 1

0

1

10

0

1

0

1

0

1

The above DFA A2 presented di!erently.
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Definition 2.3

Let A and B be languages. We define the regular operations union, concatenation, and star

as follows.

˝ Union: A Y B “ tx | x P A or x P Bu.

˝ Concatenation: A ˝ B “ txy | x P A and y P Bu.

˝ Star : A˚
“ tx1x2 . . . xk | k $ 0 and each xi P Au.

Theorem 2.1

Regular languages are closed under union, concatenation and the star operation.

Proof of Theorem 2.1:

Let N 1 “ pQ1, ”, #1, q1, F1q, N 2 “ pQ2, ”, #2, q2, F2q be two NFAs recognising respectively
A1 and A2.

N1 N2

Union We need an NFA N such that N recognizes a string if and only if N 1 or N 2

recognizes it. By working nondeterministically, the automaton N is allowed to split
into two copies: we construct N in such a way that N 1 and N 2 work in parallel at the
same time. We assume Q1 X Q2 “ H and q0 R Q1 Y Q2. Define N “ pQ, ”, #, q0, F q

where

(1) Q “ tq0u Y Q1 Y Q2.

(2) # % Q ˆ ”ε ˆ Q is defined by: pp, s, rq P # if and only if one of the following is
true
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(a) p “ q0
s “ ε
r P tq1, q2u

(b) p, r P Q1

pp, s, rq P #1

(c) p, r P Q2

pp, s, rq P #2.

(3) F “ F1 Y F2.

The machine splits immediately into two copies of itself, which work exactly as N 1

and N 2. It accepts a string if and only if at least one of the two main copies ends up
in an accepting state, i.e., in F1 or in F2, i.e., if and only if N 1 or N 2 accept it.

N

"

"

Concatenation Here we need an NFA N that accepts a word w if and only if w can be
broken into two pieces: a prefix and a su$x w “ wpws such that wp is accepted by
N 1 and ws is accepted by N 2. We set q1 as the initial state and let the machine read
the same way N 1 would do. Any time that N 1 finds itself in an accepting state, we
want N to non-deterministically start reading as if it were N 2 but still remaining a
copy of itself: so we make it split any time it comes to some final state of N 1. The
reason is that we want to be able to check longer sub-strings as well, because it might
be the case that the first prefix that is found to be accepted by N 1 corresponds to a
su$x that is rejected by N 2, while there is a longer prefix which is also accepted by
N 1 that yields a su$x which is this time also accepted by N 2. Formally, we define
# by: pp, s, rq P # if and only if one of the following is true

(1) p, r P Q1

pp, s, rq P #1

(2) p, r P Q2

pp, s, rq P #2

(3) p P F1

s “ ε
r “ q2
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The third condition guarantees the splitting. Finally, we set the accepting set to be
F “ F2.

N

"

"

Star Here the machine N should be able to check if a word w can be broken into a finitely
many pieces w “ w1w2 ¨ ¨ ¨ wk, each of them being accepted by N 1. So N has to read
w1 as if it were N 1, and when it finds itself in an accepting state, it needs to start all
over again and read w2 and so on and so forth. The construction is similar to the one
of the concatenation, but since A˚

1 contains the empty string, we want N to accept
ε. So we just add an initial state q0 which is also an accepting state, and from where
the initial state of N 1 is reached by an ε move.

N

"

"

"

1.3 Regular Expressions

Definition 3.1

We say that R is a regular expression if R is of one the following form:
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(1) a (for some a P ”)

(2) ε

(3) H

(4) R1 Y R2

(5) R1 ˝ R2

(6) R1
˚

where R1 and R2 are regular expressions.

The expression ε represents the language containing a single sequence, namely, the empty se-
quence, whereas H represents the language that doesn’t contain any sequence. Notice that

(1) R ˝ H “ H ˝ R “ H (2) H
˚

“ tεu.

Definition 3.2

Let R be a regular expression. We define by induction its associated language LpRq as
follows:

(1) Lpaq “ tau

(2) Lpεq “ tεu

(3) LpHq “ H

(4) LpR1 Y R2q “ LpR1q Y LpR2q

(5) LpR1 ˝ R2q “ LpR1q ˝ LpR2q

(6) LpR˚
1q “ LpR1q

˚.

Theorem 3.1

A language L is regular if and only if there exists a regular expression R such that L “ LpRq.

Proof of Theorem 3.1:

(&) Given any any regular expression R, we show, by induction on the length of R, that
the language LpRq is recognized by some NFA.

(1) If the length of R is 1:

(a) Lpaq “ tau

q0 q1
a

(b) Lpεq “ tεu

q0
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(c) LpHq “ H

q0

(2) If the length of R is larger than 1, we need to consider the following regular
expressions.

(a) LpR1 Y R2q “ LpR1q Y LpR2q

(b) LpR1 ˝ R2q “ LpR1q ˝ LpR2q

(c) LpR˚
1q “ LpR1q

˚.

All three results derive immediately from Theorem 2.1.

(ñ) (1) We go from some n-states DFA to some n ` 2-states Generalized-NFA:

(a) we add

(A) an initial state “s”

(B) an accepting state “a”

(C) a transition s
ε

!Ñ q0
(D) a transition q

ε
!Ñ a (each accepting state q ‰ a)

(b) we reduce the set of accepting states to tau.

(2) We go from some k ` 1 ` 2-states Generalized-NFA a to some k ` 2-states
Generalized-NFA by removing one state from the original automaton: qrip R

ts, au and for each states qin R ta, qripu and qout R ts, qripu we set the new
transition to be:

qin
RinÑrip ˝ pRripÑripq

˚
˝ RripÑout Y RinÑout

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Ñ qout

where RinÑrip, RripÑrip, RripÑout and RinÑout denote the following transitions:

(a) qin
RinÑrip
!!!!!Ñ qrip

(b) qrip
RripÑrip
!!!!!Ñ qrip

(c) qrip
RripÑout
!!!!!!Ñ qout

(d) qin
RinÑout
!!!!!Ñ qout.

(3) We end up with a 2-states (“s” and “a”) Generalized-NFA with a single transi-

tion of the form s
R
!Ñ a. The regular expression R gives the solution.

a
an NFA whose transitions are labelled with regular expressions.
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Example 3.1

(a)

1

0

0, 1
(b)

1

0

0, 1
"

"
s

a

(c)

0
"

s

a

1(0 [ 1)⇤

(d)

s

a

0⇤1(0 [ 1)⇤

An other example with a more complicated automaton.

Example 3.2

(1)

1

0

0

0

1

1

(2)
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1

0

0

0

1

1
"

"
s a

"

(3)

0

1 "

s a"

00 [ 1

01 10 [ 0

11

(4)

s a

(10 [ 00)(00 [ 1)⇤01 [ 11

0(00 [ 1)⇤01 [ 1

0(00 [ 1)⇤

(10 [ 0)(00 [ 1)⇤ [ "

(5)

s a

�
0(00 [ 1)⇤01 [ 1

��
(10 [ 00)(00 [ 1)⇤01 [ 11

�⇤�
(10 [ 0)(00 [ 1)⇤ [ "

� [ �
0(00 [ 1)⇤�

1.4 Non-Regular Languages

Notice that any finite word on ” can be coded by an integer, so that there are only →0 many
regular languages. But there are 2→0 many languages for there are as many as the number of
subsets of N. Hence most languages are not regular!

Theorem 4.1: Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is
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any sequence in A of length at least p, then s may be divided into three pieces, s “ xyz,
satisfying the following conditions:

(1) for each i $ 0, xyiz P A,

(2) |y| ’ 0, and

(3) |xy| # p

Proof of Theorem 4.1:

Let A be any DFA such that LpAq “ A. Set p to be the number of states of A. Let s
be accepted by A. Then s may be broken into three pieces: s “ xyz. Such that the path
q0

x
!Ñ q never visits twice the same state. The path q

y
!Ñ q visits twice the state q but

none of the others twice. This holds since for every word u of length at least p every path
q1 u

!Ñ q” in A visits at least twice the same state.

z

y

x

Example 4.1

The language t0n1n | n P Nu is not regular.
By contradiction, assume there exists some DFA A “ pQ, ”, ω, q0, F q which recognizes
t0m1m | n P Nu. We consider p “ |Q| the number of states of A. the word 0p1p is accepted
by A. By the previous Pumping Lemma there exist x, y and z such that 0p1p “ xyz and

(1) for each i $ 0, xyiz P t0n1n | n P Nu,

(2) |y| ’ 0, and

(3) |xy| # p

But since |xy| # p, it turns out that xy P 0˚ and z P 0˚1˚. Therefore, for each integer i ’ 1
we have xyi P 0˚, hence xyiz contains too many 0’s compared to 1’s: a contradiction.
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1.5 Pushdown Automata

Definition 5.1

A pushdown automaton (PDA) is a 6-tuple pQ, ”, %, ω, q0, F q, where Q, ”, % and F are all
finite sets, and

(1) Q is the set of states,

(2) ” is the input alphabet,

(3) % is the stack alphabet,

(4) ω : Q ˆ ”ε ˆ %ε !Ñ PpQ ˆ %εq is the transition functiona,

(5) q0 P Q is the initial state, and

(6) F " Q is the set of accepting states.

a
For a deterministic version, replace PpQ ˆ !ωq by Q ˆ !ω.

Definition 5.2

A pushdown automaton M “ pQ, ”, %, ω, q0, F q computes as follows. It accepts input w
if w can be written as w “ w1w2 . . . wm, where each wi P ”ε and sequences of states
r0, r1, . . . , rm P Q and sequences s0, s1, . . . , sm P %!ω exist that satisfy the next three
conditions. The sequence psiqi"m represent the sequence of stack contents that M goes
through on the accepting branch of the computation.

(1) r0 “ q0 and s0 “ ε. This condition testifies that M starts out properly: both in the
initial state and with an empty stack.

(2) For i “ 0, . . . , m ´ 1, we have pri`1, bq P ωpri, wi`1, aq, where si “ at and si`1 “ bt for
some a, b P %ε and t P %!ω. This condition states that M moves properly according
to the state, stack, and next input symbol.

(3) rm P F . This condition states that an accepting state occurs right at the end of the
reading of the input.
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(1) One step of a computation:

ri

a
e
c

w1w2w3 · · · wi�1wiwi+1 · · · wm

ri+1
ri

b
e
c

w1w2w3 · · · wi�1wiwi+1 · · · wm

ri+1

(2) The special case where a “ ε and b P % (the PDA “pushes” b to the top of the stack)

ri

e
c

w1w2w3 · · · wi�1wiwi+1 · · · wm

ri+1
ri

b
e
c

w1w2w3 · · · wi�1wiwi+1 · · · wm

ri+1

(3) The special case where a P % and b “ ε (the PDA “pops o!” a from the top of the
stack)

ri

a
e
c

w1w2w3 · · · wi�1wiwi+1 · · · wm

ri+1
ri

e
c

w1w2w3 · · · wi�1wiwi+1 · · · wm

ri+1

Example 5.1

(1) The language t0m1m | m P Nu is recognized by the following PDA.



Recursivity 31

1, 0 ! "

", " ! ?
0, " ! 0

", ? ! "
1, 0 ! "

", " ! "

(2) The language t0i1j2k | i, j, k $ 0 and i “ j or i “ ku is recognizable by the following
PDA, however it is not recognizable by a deterministic PDA.

1, 0 ! "

", " ! ?

0, " ! 0

", ? ! ?

", ? ! ?
", " ! "

", " !
" ", " ! "

1, " ! " 2, 0 ! "

2, " ! "

1.6 Context-Free Grammar

Definition 6.1

A context-free grammar is a 4-tuple pV, ”, R, Sq, where

(1) V is a finite set whose elements are called variables,

(2) ” is a finite set, disjoint from V . Its elements are called terminals,

(3) R is a finite set of rules. Each rule is a couple of the form pϑ, uq where ϑ P V and
u P pV Y ”q

˚ a.

(4) S P V is the initial variable.

a
In particular, one may have u “ ω.

If u, v and w are sequences of variables and terminals, and A Ñ w is a rule of the grammar,
we say that uAv yields uwv (written uAv ñ uwv). We write u ñ

˚ v if u “ v or if a sequence
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u1, u2, . . . , uk exists for k ’ 0 and

u ñ u1 ñ u2 ñ . . . ñ uk ñ v.

The language generated by the grammar is tw P ”!ω
| S ñ

˚ wu.

Example 6.1

Consider pV, ”, R, Sq the context-free grammar where V “ tSu, ” “ t0, 1, 7u and R is the
following set of production rules:

˝ S !Ñ 0S1 ˝ S !Ñ 7

This grammar generates the language t0n71n | n P Nu.

Example 6.2

Consider pV, ”, R, Sq the context-free grammar where V “ tSu, ” “ t0, 1u and R is the
following set of production rules:

˝ S !Ñ 0S1 ˝ S !Ñ ε

This grammar generates the language t0n1n | n P Nu.

Example 6.3

Consider pV, ”, R, Sq the context-free grammar where V “ tS, A, B, C, Du, ” “ t0, 1, 2u

and R is the following set of production rules:

˝ S !Ñ AB

˝ S !Ñ C

˝ A !Ñ 0A1

˝ A !Ñ ε

˝ B !Ñ B2

˝ B !Ñ ε

˝ C !Ñ 0C2

˝ C !Ñ D

˝ D !Ñ D1

˝ D !Ñ ε

which are usually summarized by:

˝ S !Ñ AB | C

˝ A !Ñ 0A1 | ε

˝ B !Ñ B2 | ε

˝ C !Ñ 0C2 | D

˝ D !Ñ D1 | ε
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This grammar generates the language t0i1j2k | i, j, k $ 0 and i “ j or i “ ku.

Theorem 6.1

A language is recognized by a PDA if and only if it is context-free.

Proof of Theorem 6.1:

(&) Get a context-free grammar. First notice that it is equivalent to add strings to the
stack all at once or one at a timea. The Pushdown P works as follows:

(1) P has four states: the initial state, the final accepting state, the final rejecting
state, and a state called “Loop”

(2) While in the initial state, P places a marker symbol “K” followed by the start
variable S inside the stack, and goes to the “Loop” state. (So that the stack
content is now SK.)

(3) While in the Loop state,

(a) If the top stack is a variable A, then P selects non-deterministically one of
the rules for A and substitutes A by the string on the right hand side of the
rule and remains in the Loop state.

(b) If the top stack is a terminal symbol a, then P reads the next input symbol
from the input and compares it to a.

(A) If they don’t match, P enters the final rejecting state (hence this branch
of non-deterministic computation is rejected).

(B) If they do match, P pops o! the terminal symbol a from the top of the
stack, remains in the Loop state and starts (3) again.

(c) If the top of stack is “K”, then P enters the final rejecting state. Notice
that the only way the input word can be accepted is if no letter (from the
input) remains to be read – since there is no transition from this final sate.

(ñ) We start from a PDA and construct P an equivalent one such that

(1) P has a single accepting state qacc.

(2) It empties its stack before accepting

(3) Each transition either pushes a symbol onto the stack or pops one o!, but does
not do both at the same time so that the content of the stack never stays put.

From P “ pQ, ”, %, ω, q0, tqacc.uq we construct the context-free grammar G.
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(1) V “ tApq | p, q P Qu,

(2) ” is unchanged,

(3) the start variable is Aq0, qacc..

(4) The set of rule R is:

(a) For each p, q, r, s P Q, a P % and e, f P ”ε if ωpp, e, εq contains pr, aq and
ωps, f, aq contains pq, εq put the rule Apq Ñ e Arsf in R.

(b) For each p, q, r P Q put the rule Apq Ñ AprArq in R.

(c) For each p P Q put the rule App Ñ ε in R.

Why is it the case that the language recognized by P is the one derived by G?

(ñ) If w is accepted by P , then there exists a computation that accepts it. Notice
that by construction, this computation never leaves the stack content still and
the automaton ends with an empty stack. So, when something is pushed in the
stack, it must be popped o! later on. So, the whole computation which goes
from q0 to qacc. determines one derivation.

(&) Any successful derivation induces an accepting computation.

a
This is an easy exercise to construct from any given PDA that can push finite words to the stack,

another one that only pushes letters.

Every regular language is context-free. But many languages are neither regular nor context-free.

Theorem 6.2: Pumping Lemma for Context-Free Languages

If A is a context-free language, then there is a number p (the pumping length) where, if s is
any sequence in A of length at least p, then s may be divided into five pieces, s “ vwxyz,
satisfying the following conditions:

(1) for each i $ 0, vwixyiz P A,

(2) |wy| ’ 0, and

(3) |wxy| # p

Proof of Theorem 6.2:

See Theorem 2.19 in [52]. We first fix a grammar. Then we concentrate on getting a
derivation treea large enough so that there is one path – from the root to some leaf – that
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visits twice the same variable T . For this, if k is the number of variables in the grammar,
we need a tree of height at least k`1. We take m to be the maximum number of symbols in
the right hand side of a rule b, and take n “ maxp2, mq. Every word of height at least nk`1

that is generated by this grammar has a derivation tree with at least one branch whose
length is $ k ` 1. We set p “ nk`1.

Take any word u generated by this grammar such that |u| $ p holds. Consider the smallest
– in terms of nodes – derivation tree that produces u, and consider a node T which repeats
only once and such that there is no other variable that repeats in the subtree induced by
this node. The whole derivation tree is described below:

T

S

T

x y zwv

Notice that |wxy| # p holds, because the subtree induced by T has never twice the same
variable (except for T itself which appears only twice). Hence every branch on this subtree
has length at most k ` 1, which guarantees that wxy has length at most p “ nk`1.

Notice also that |wy| ’ 0 because otherwise, we would have w “ y “ ε. But then the deriva-
tion tree below would also produce the same word which would contradict the minimality
of the one we chose.

S

T

x

zv

We also clearly have, for each i $ 0, vwixyiz P A:
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T

S

T

x y zwv

T

T

x yw

S

z

T

ywv

a
notice that in a derivation tree every leaf is a terminal symbol, and very other node is a variable.

bk is the maximum number of immediate successors of a node in the derivation tree.

Example 6.4

The following language is not context-free:

t0n1n2n | n P Nu.

Towards a contradiction we assume that this language is context-free so that there exists
some integer p that verifies the conditions of Theorem 6.2. We consider the word u “

0p1p2p P A. By Theorem 6.2, there exist words v, w, x, y, z such that u “ vwxyz and

(1) vwixyiz P A (@i $ 0) (2) |wy| ’ 0, and (3) |wxy| # p

Since |wxy| # p holds, this word cannot contain all three letters 0,1 and 2. We distinguish
two di!erent cases:

(1) if wxy P 0˚1˚, then z P 1˚2˚. Therefore for each i ’ 1 vwixyiz contains either more
0’s than 2’s or 1’s than 2’s.

(2) if wxy P 1˚2˚, then v P 0˚1˚. Therefore for each i ’ 1 vwixyiz contains either more
1’s than 0’s or 2’s than 0’s.



Chapter 2

Turing Machines

A Turing Machine (TM) is a general model of computation introduced in 1936 by Alan Turing
[60]. It consist in an infinite tape and a tape head that can read, write and move around. It can
both read the content of the tape and write on it. The read-write head can move both to the
left and to the right. The tape is infinite. There are special states for rejecting and accepting
which both take immediate e!ect.

100 01 1

Control

t t t t t

With Turing machines as for pushdown automata and finite automata, one has the notion of
deterministic machines and non-deterministic ones. We consider deterministic Turing machines
first.

2.1 Deterministic Turing Machines

Definition 1.1

A (deterministic) Turing machine is a 7-tuple pQ, ”, %, ω, q0, qacc., qrej.q where Q, ”, % are
all finite sets and

(1) Q is the set of states,

(2) ” is the alphabet not containing the blank symbol, \,
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(3) % is the tape alphabet which satisfies \ P % and ” ( %

(4) ω : Q ˆ % !Ñ Q ˆ % ˆ tL, Ru is the transition function

(5) q0 is the initial state

(6) qacc. is the accepting state

(7) qrej. is the rejecting state

Clearly qacc. and qrej. must be di!erent states.

Notice that the head cannot move o! the left hand end of the tape. If ω says so, it stays put. A
configuration of a Turing machine is a snapshot: it consists in the actual control state (q), the
position of the head and what is written on the tape (w). To indicate the position of the head
we consider the word w0 which is located to the left of the head and slice the tape content w
into the w0w1 “ w. This means that the head is actually positioned on the first letter of w1.
Strictly speaking the content of the tape is an infinite word:

w \ \ \ . . . . . . \ \ . . .

but we forget about the infinite su$x \ \ \ . . .. We then write w0qw1 to say that

˝ the tape content is w0w1 \ \ \ . . .

˝ the head is positioned on the first letter of w1 \ \ \ . . .

˝ the actual control state is q.

The initial configuration on input w P ”!ω is q0w.
An halting configuration is

˝ either an accepting configuration of the form w0qacc.w1,

˝ or a rejecting configuration of the form w0qrej.w1.

Given any two configurations C, C 1 we write C ñ C 1 (for C yields C 1 in one step) if there exist
a, b, c P %, and u, v P %!ω such that

˝ either C “ uaqibv, C 1
“ uqjacv and ωpqi, bq “ pqj , c, Lq,

˝ or C “ qibv, C 1
“ qjcv and ωpqi, bq “ pqj , c, Lq,

˝ or C “ uqibv, C 1
“ ucqjv and ωpqi, bq “ pqj , c, Rq.
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Definition 1.2

A Turing machine accepts input w if there is a sequence of configurations C0, . . . , Ck such
that

(1) C0 “ q0w

(2) Ci yields Ci`1 (for any 0 # i ) k)

(3) Ck is an accepting configuration.

Definition 1.3

The set of all words accepted by a Turing machine M is the language it recognizes:

LpMq “ tw P ”!ω
| M accepts wu.

Example 1.1

A Turing machine that recognizes

tww | w P t0, 1u
˚
u

where w is the mirror of w (for instance 001011 “ 110100).

pQ, ”, %, ω, q0, qacc., qrej.q where

(1) Q “ tq0, qremember 0 look for \ go right, qremember 1 look for \ go right, qwrite 0, qwrite 1,
qlook for \ go left, qstep right, qacc, qreju

(2) ” “ t0, 1u

(3) % “ t0, 1, \u

(4) ω : Q ˆ % !Ñ Q ˆ % ˆ tL, Ru is defined by
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pq0, \q !Ñ qacc.
pq0, 0q !Ñ pqremember 0 look for \ go right, \, Rq

pq0, 1q !Ñ pqremember 1 look for \ go right, \, Rq

pqremember 0 look for \ go right, \q !Ñ pqwrite 0, \, Lq

pqremember 0 look for \ go right, 0q !Ñ pqremember 0 look for \ go right, 0, Rq

pqremember 0 look for \ go right, 1q !Ñ pqremember 0 look for \ go right, 1, Rq

pqremember 1 look for \ go right, \q !Ñ pqwrite 1, \, Lq

pqremember 1 look for \ go right, 0q !Ñ pqremember 1 look for \ go right, 0, Rq

pqremember 1 look for \ go right, 1q !Ñ pqremember 1 look for \ go right, 1, Rq

pqwrite 0, \q !Ñ qrej.
pqwrite 0, 0q !Ñ pqlook for \ go left, \, Lq

pqwrite 0, 1q !Ñ qrej.
pqwrite 1, \q !Ñ qrej.
pqwrite 1, 0q !Ñ qrej.
pqwrite 1, 1q !Ñ pqlook for \ go left, \, Lq

pqlook for \ go left, \q !Ñ pqstep right, \, Rq

pqlook for \ go left, 0q !Ñ pqlook for \ go left, 0, Lq

pqlook for \ go left, 1q !Ñ pqlook for \ go left, 1, Lq

pqstep right, \q !Ñ qacc.
pqstep right, 0q !Ñ pqremember 0 look for \ go right, \, Rq

pqstep right, 1q !Ñ pqremember 1 look for \ go right, \, Rq
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If we rename the states :

q0 ! q0
qremember 0 look for \ go right ! q1
qremember 1 look for \ go right ! q2
qwrite 0 ! q3
qwrite 1 ! q4
qlook for \ go left ! q5
qstep right ! q6

the transition function becomes:

pq0, \q !Ñ qacc.
pq0, 0q !Ñ pq1, \, Rq

pq0, 1q !Ñ pq2, \, Rq

pq1, \q !Ñ pq3, \, Lq

pq1, 0q !Ñ pq1, 0, Rq

pq1, 1q !Ñ pq1, 1, Rq

pq2, \q !Ñ pq4, \, Lq

pq2, 0q !Ñ pq2, 0, Rq

pq2, 1q !Ñ pq2, 1, Rq

pq3, \q !Ñ qrej.
pq3, 0q !Ñ pq5, \, Lq

pq3, 1q !Ñ qrej.
pq4, \q !Ñ qrej.
pq4, 0q !Ñ qrej.
pq4, 1q !Ñ pq5, \, Lq

pq5, \q !Ñ pq6, \, Rq

pq5, 0q !Ñ pq5, 0, Lq

pq5, 1q !Ñ pq5, 1, Lq

pq6, \q !Ñ qacc.
pq6, 0q !Ñ pq1, \, Rq

pq6, 1q !Ñ pq2, \, Rq

Definition 1.4

A language L is Turing recognizable if there exists a Turing machine M such that

L “ LpMq.

Proposition 1.1

Turing Machines with bi-infinite tapes are equivalent to Turing machines.
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Proof of Proposition 1.1:

Left as an exercise.

Proposition 1.2

Pushdown automata with 2 stacks are equivalent to Turing machines.

Proof of Proposition 1.2:

Left as an exercise.

Definition 1.5

A Decider is a Turing machine that halts on all inputs.

Definition 1.6

A language is Turing decidable i! there exists a Decider that recognizes it.

(We will see later that Turing recognizable is also called recursively enumerable (r.e. for short)
and decidable is also called recursive.)

Example 1.2

A Decider for tanbncn | n P Nu:

˝ Scan the input from left to right to be sure that it is a member of a˚b˚c˚ and reject
if it isn’t.

˝ Return the head to the left and change one c into an x, then one b into x, then one
a into x. Go back to the first blank \.

Repeat again until the tape is only composed of x, in which case accept. Otherwise
reject.
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Definition 1.7

A k tape Turing machine is the same as a Turing machine except that is composed of k
tapes: 1 ,. . . , k , with k independent heads so that the transition function becomes

ω : Q ˆ %k
!Ñ Q ˆ %k

ˆ tL, Ru
k

Notice that a configuration of a k-tape Turing machine is of the form

´
u1qv1 , u2qv2 , . . . . . . , ukqvk

¯

1 2 k
.

Proposition 1.3

Given any Turing machine there exist

(1) an equivalent Turing machine with a bi-infinite tape,

(2) a multi-tape Turing machine,

(3) a multi-tape with bi-infinite tapes Turing machine.

Proof of Proposition 1.3:

Left as an exercise.

Theorem 1.1

Every multi-tape Turing machine has an equivalent single tape Turing machine.

Proof of Theorem 1.1:

Let M be a multi-tape Turing machine. We will describe a Turing machine S that rec-
ognizes the same language. Let pw1, w2, . . . , wkq be the input of M on its k tapes. The
corresponding input of S will be 7w17w27 . . . 7wk7, where 7 does not belong to the alphabet
of M. To simulate a single move of M, S scans its tape from the first 7 which marks the
left-hand end, to the k`1th 7 (which marks the right-hand end) replacing each letter a right
after the 7 symbol (except for the k ` 1th one) by â to indicate the position of the heads.
Then S makes a second pass to update the tapes according to M’s transition functions.
If at any point S moves one of the virtual heads to the right onto a 7, this action signifies



44 Gödel & Recursivity

that M has moved the corresponding head onto the previously unread blank portion of
that tape. So S writes a blank symbol on this tape cell and shifts the tape contents from
this cell until the rightmost 7, one unit to the right. Then it continues the simulation as
before.

00 01 t t

01 1 t t t

0 01 1

t t t t

]]]] 1 1

t

10 01 1

t

00 01 t t t1̂0̂ bt

M

S
2.2 Non-Deterministic Turing Machines

Definition 2.1

A non-deterministic Turing machine (NTM) is the same as a deterministic Turing machine
except for the transition function which is of the form:

ω : Q ˆ % !Ñ PpQ ˆ % ˆ tL, Ruq.

The computation of a (deterministic) Turing machine is a sequence of configurations

C0 ùñ C1 ùñ . . . ùñ Ck ùñ . . .

that may be finite or infinite.
It accepts the input if this sequence is finite and the last configuration is an accepting one.
The computation of a non-deterministic Turing machine is no more a sequence of configurations
but a tree whose nodes are configurations. This tree may have both infinite and finite branches.
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The machine accepts the input if and only if there exists some branch that is finite and whose
leaf is an accepting configuration.

Theorem 2.1

For every NTM there exists a deterministic Turing machine that recognizes the same lan-
guage.

Proof of Theorem 2.1:

2434 2 24 t t t2

M
t t t t

t t t

t t

0 0

0 0

1

111

1

1 1 1 176

1

2

3

We consider a 3-tape ( 1 , 2 and 3 ) deterministic Turing machine M to simulate a NTM
N :

˝ (1) 1 is the input tape,

(2) 2 is the simulation tape, and

(3) 3 is the address tape.

˝ Initially, 1 contains the input w and 2 and 3 are empty.

˝ 1 always keeps the input w. So the content of 1 is never modified.

˝ 2 simulates N on one – initial segment of a – branch of its non-deterministic com-
putation tree.

˝ 3 contains a finite word which corresponds to a succession of non deterministic
choices. For instance the word 132 stands for: among the non-deterministic options
choose the first one for the first transition, the third one for the second and the second
one for the third. This means that we consider k P N to be

maxtCardpωpq, ϖqq | q P Q, ϖ P %u

and for each | q P Q, ϖ P % we fix a total ordering of ωpq, ϖq.
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Words on 3 all belong to t1, 2, . . . , ku
˚. Moreover, during the running time, the

content of 3 changes over and over again until the machine accepts. This series gives
rise to an enumeration of the infinite k-ary tree in a breadth-first search. This means
it enumerates all words in t1, 2, . . . , ku

˚ along the following well-ordering:

u ! v &ñ

$
&

%

|u| ) |v|

or

|u| “ |v| and u )lexic. v

which gives:

ε, 1, 2, . . . , k, 11, 12, . . . , 1k, 21, 22, . . . , 2k, . . . . . . , k1, k2, . . . , kk, 111, 112, . . . , 11k, . . . . . .

˝ At first, M Copies the content of 1 (= the input w) to 2 .

˝ It then uses 2 to simulate N with input w on the branch b of its non-deterministic
computation which is lodged on 3 . In case the word b does not correspond to a real
computationa or if the simulation of N on 2 either reaches the rejecting state or
does not reach any halting state at all, then M erases completely 2 , replaces b on
3 with its the immediate !-successor, and starts all over again – by copying 1 on
2 and simulating N on 2 in accordance with the series of choices recorded on 3 .

a
this is the case for instance if from the initial configuration q0w there are only two non-deterministic

choices available, whereas the word on 3 reads 3 . . ..

Proposition 2.1

˝ Decidable languages are closed under union, intersection and complementation.

˝ Turing recognizable languages are closed under union and intersection.

Proof of Proposition 2.1:

Left as an exercise.
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Definition 2.2

Tape p of a k-tape Turing machine works as a printer if its head on tape p only goes right.
We say that on tape p, the infinite word a0a1a2a3 . . . . . . P %ω is printed out by some
computation of the Turing machine if

˝ either the Turing machine halts and a0a1a2a3 . . . . . . is what shows on tape p, or

˝ the Turing machine never halts but for each cell n of tape p, an is the letter printed
outa.

a
This is printed out precisely at step n ` 1 since the head only goes right.

Definition 2.3

An enumerator is a 2-tape Turing machine whose second tape works as a printer.
Assuming that on the empty input it prints out the infinite word a0a1a2a3 . . . . . . . . . we say
that it enumerates the following language

L “

$
&

%ak . . . ak`i P ”!ω
| 0 # i and

»

–
k “ 0 and ak`i`1 “ \

or
ak´1 “ ak`i`1 “ \

fi

fl

,
.

-

(Notice that the alphabet of the printer tape must satisfy ” Y tω, \u " % so that it can
eventually print out the empty word).

This means that an enumerator prints out words separated by \. When it prints out an ever
ending word that contains no \, the result is the same as if it were printing an ever ending
sequence of \: the same language would be enumerated. So, for every enumerator E there
exists an equivalent enumerator E 1 that enumerate the same language but will always, whenever
it writes a letter di!erent from \, write a \ symbol further away.
Such an enumerator would print out something like

\
˚w0 \ \

˚w1 \ \
˚w2 \ \

˚ . . . . . . \ \
˚wn \ \

˚wn`1 . . . . . . . . .

when twi | i P Nu “ L whenever infinitely many words are printed. Or

\
˚w0 \ \

˚w1 \ \
˚w2 \ \

˚ . . . . . . \ \
˚wn \ \ \ \ \ \ . . . . . . . . .

when twi | i # nu “ L is finite. In particular it would print out

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ . . . . . . . . . . . . . . . . . .

for the empty language.
Notice that the words that compose L may come in any order, and they also may be printed
out many times or even infinitely often.



48 Gödel & Recursivity

Definition 2.4

A language L is recursively enumerable if there is an enumerator that enumerates L.

Theorem 2.2

A language is Turing Recognizable if and only if it is recursively enumerable.

Proof of Theorem 2.2:

(ñ) from M we build E that enumerates LpMq.

(1) Repeat the following for i “ 1, 2, 3, . . .

(2) Successively for each word w P ”"i, run M for i-many steps on w

(3) If any computation accepts, print out the corresponding w.

(This way every word w P L will be printed out – even infinitely often – and none
others.)

(&) From E we build a k-tape Turing machine M. On input w: it runs E on two of its
tape, and some other one it checks every time E outputs some word v, whether v “ w
or not and accepts if eventually they are the same.

Proposition 2.2

For any infinite L " ”!ω,

L is Turing decidable &ñ

$
’’’’’’’’’’’’’&

’’’’’’’’’’’’’%

there exits an enumerator
1 E which prints out

u0 \ u1 \ u2 \ . . . . . . \ ui \ ui`1 \ . . . . . . . . .

such that

$
’’’’’’’&

’’’’’’’%

L “ tui | i P Nu

and

i ) j ùñ

$
&

%

|u| ) |v|

or

|u| “ |v| and u )lexic. v.
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1. Whose head on the printing tape can stay put.

Notice that this enumerator is required to leave exactly one \ between the successive words
that it prints out, so that whenever it prints out two consecutive \, it will forever on only print
\ symbols (which means go right indefinitely without modifying the content of the tape).

Proof of Proposition 2.2:

Left as an exercise.

2.3 The Concept of Algorithm

In 1900, Hilbert gave a list of the main mathematical problems of the time [31, 32]. The 10th

one was the following: given a Diophantine equation with any number of unknown quantities,

and with rational integral numerical coe!cients, can we derive a process according to which

it can be determined in a finite number of operations whether the equation admits a rational

integer solution? This corresponds to the intuitive notion of an algorithm. Proving that such an
algorithm does not exist requires a formal definition of the notion of “algorithm”. The “Church-

Turing thesis” states that the informal notion of an algorithm corresponds exactly to the notion
of a ϱ-calculus formula or equivalently to a Turing machine.
In 1970, Yuri Matijasevic proved2 that the 10th problem of Hilbert is undecidable [40]: assuming
that the notation P px1, . . . , xnq stands for a polynomial with integer coe$cients, then there is
no decider for

tP px1, . . . , xnq | Dpa1, . . . anq P Nn P pa1, . . . , anq “ 0u.

Definition 3.1

A “coding” is a rule for converting a piece of information into another object. Given any
non empty sets E, F , a coding is a one-to-one (total) function

c : E
1´1
!!Ñ F.

Example 3.1

2
this is combined work of Martin Davis, Yuri Matiyasevich, Hilary Putnam and Julia Robinson
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E “ t0, 1u
˚, F “ N and c : E

1´1
!!Ñ F is a coding defined by:

cpwq “ 1w
2

p= the word “ 1w” read in base 2q.

Notation 3.1

Given any Turing machine M, we write

˝ Mpwq Ó to say that the machine M stops on input w

‚ Mpwq Ó a
c
c
.

means that M stops in an accepting configuration, and

‚ Mpwq Ó re
j.

means that M stops in a rejecting configuration.

˝ Mpwq Ò to say that the machine M never stops on input w.

We notice the following:

(1) Given any finite alphabet ”, and any Turing machine M whose alphabet is ”, there exists
one3 Turing computable coding: c : ”!ω

!Ñ t0, 1, \u
!ω and a Turing machine Mc with

tape alphabet t0, 1, \u such that M accepts w if and only if Mc accepts cpwq.

(2) Every regular language is decidable because a DFA is nothing but a deterministic Turing
machine that always goes right.

(3) Every Context-free language is decidable, because any PDA can be easily simulated by
some equivalent non-deterministic Turing machine.

(4) We have the following strict inclusions of languages.

Regular ( Context-Free ( Decidable

“

Recursive

( Turing Recognizable.

“

Recursively Enumerable

In computer science, a programming language is said be “Turing complete” or “universal” if
it can be used to simulate any single-tape Turing machine. Examples of Turing-complete pro-
gramming languages include:

˝ Ada

˝ C

˝ C++

˝ Common Lisp

˝ Haskell

˝ Java

˝ JavaScript

˝ Object Pascal

˝ Perl

˝ Python

˝ Lisp

˝ Pascal
3
There exist infinitely many such codings.
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˝ R ˝ Smalltalk ˝ Prolog ˝ TEX, etc.

One step further: we go from looking at Turing machines as acceptors (which recognize a
language, i.e. a set of input), to machines that compute functions. But since a Turing machine
may never halt on a given input, the function it calculates is a partial functios; so, not necessarily
defined on the whole domain.

Definition 3.2

Given any two non-empty finite sets A, B, a partial function f : A!ω
á B!ω is “Turing

computable” if and only if there exists a Turing machine Mf such that

˝ on input w R dompfq: Mf pwq Ò, and

˝ on input w P dompfq: Mf pwq Ó a
c
c
.

with the word “fpwq” on its tape.

2.4 Universal Turing Machine

If we compare a Turing Machine with a computer, on one hand the Turing machine seems much
better because it can compute for ever without any chance to breakdown and it has an infinitely
large storage facility. But on the other hand, a Turing machine seems to be more of a computer
with a single software program, whereas a computer can run di!erent programs.

A computer resembles more of a Turing machine with finite capacity but, a Turing machine
that we can modify by changing its transition function – every program is like a new transition
function for the machine.

How are we going to address this issue, since we claimed that a Turing machine is an abstract
model of computation ? This answer to this is the Universal Turing Machine. It is a machine
that can work just like any other machine provided that we feed it with the right code of the
machine.

We will employ universal Turing machines to obtain:

(1) a language that is Turing recognizable but not decidable
4,

(2) a language that is not Turing recognizable.

From now on, we only consider Turing Machines with fixed alphabets ” “ t0, 1u, % “ t0, 1, \u.
Any such Turing machine is of the form:

M “ xtq0, q1, . . . , qku, t0, 1u, t0, 1, \u, ω, q0, qacc., qrej.y

4
in other words: a non-recursive recursively enumerable language.
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Where ω is the description of the transition function of M:

ω “ tpq3, 0, q1, 1, Rq, pq8, 1, q4, 0, Lq, pq3, 0, q3, 0, Lq, . . . . . .u

So, that the description of a Turing machine is a finite word over some given finite alphabet.
To be precise, the description of such a machine is a finite sequence M over the following finite
alphabet:

A “

!
x, y, q, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, \, L, R, t, u, p, q, ,

)
.

Since CardpAq ) 28 we can code any letter l P A by a sequence of eight 0’s and 1’s, i.e we take
any 1-1 mapping

C : A !Ñ t0, 1u
r8s

and we define a Turing computable coding

c : A!ω
!Ñ t0, 1u

!ω

by
cpa0 . . . apq “ Cpa0q̂ Cpa1q̂ Cpa2q̂ . . .ˆCpapq.

We denote by xMy the code of M, i.e.,

xMy “ cpMq.

Clearly, the following language is decidable:

txMy : M is a TMu.

Proposition 4.1: Universal Turing Machine

There exists a Turing machinea U such that on each input of the form vw P t0, 1u
˚,

if v “ xMy for some Turing machineb M, then U works as M on input w.

a
working on alphabets ”U “ t0, 1u and !U “ t0, 1,\u

b
also working on alphabets ”U “ t0, 1u and !U “ t0, 1,\u

Notice that for any word u P t0, 1u
˚, if there is a prefix of u which is the code of a Turing

Machine, then this prefix is unique 5. Therefore, in case a word u P t0, 1u
˚ can be decomposed

into u “ xMyw for some Turing machine M, this decomposition is then unique.

This means for instance that on any input w:

5
this comes from the fact the last letter of a word that defines a Turing machine is y. Therefore, reading u

from left to right by blocks of eight 0’s or 1’s, the first block that corresponds to xyy marks the end of the wanted

prefix.
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˝ Upwq Ò if and only if Mpwq Ò;

˝ Upwq Ó re
j.

with the word w1 on its tape if and only if Mpwq Ó re
j.

with the word w1 on its tape;

˝ Upw1
q Ó a

c
c
.

with w1 on its tape if and only if Mpwq Ó a
c
c
.

with w1 on its tape.

Proof of Proposition 4.1:

We build a 6-tape deterministic Universal Turing machine U .

(1) on 1 the input xMyw is inserted. It will never be modified during the rest of the
computation. Then U copies the code of

(a) the transition function of M – xωy – on 2 ;

(b) the initial state of M – xq0y – on 3 a;

(c) the accepting state of M – xqacc.y – on 4 b;

(d) the rejecting state of M – xqrej.y – on 5 c.

(2) It then uses 6 to simulate M on input w: for each step of M

(a) U reads a letter – say 0 – on 6 , and

(b) using the code of the actual state – say xq3y – on 3 , U looks in 2 for the code
of the corresponding transition – say xpq3, 0, q1, 1, Rqy – and then

(c) U verifies that the code of the new state – here xq1y – is di!erent from the content
of 4 and 5 (otherwise, if it corresponds to the content of 4 it means that it
is xqacc.y, and U accepts right away, and if it corresponds to the content of 5 it
means it is xqrej.y, in which case U rejects).

(d) If the new state is di!erent from both qacc. and qrej. – in our example q1 is
di!erent from both qacc. and qrej. – U replaces on 6 the letter it just read with
the new one – here it replaces 0 by 1 – and still on tape 6 it makes the move
indicated – here it goes right – and finally,

(e) U replaces on 3 the code of the old state by the new one – here it replaces xq3y
by xq1y.
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U

0 01 1 1111 1 1 00 01 t t10 1

M

01 1 01 1

00 01 1 01 1

00 01 00 0 1

00 01 1 01 1

0

0 01 111 1 10

0 01 1 1111 1 1 00 01 t t10 10

4

5

6

1

2

3

a
later on this tape will store the code of the actual state that M is on.

b
the content of 4 will never be modified in the future.

c
the content of 5 will never be modified in the future.
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2.5 The Halting Problem

Proposition 5.1

The following language is Turing recognizable but not decidable:

txMyw P t0, 1u
˚

| M is a TM that accepts wu.

Proof of Proposition 5.1:

By making use of a universal Turing machine, we can easily show that this language is
Turing recognizable.

Towards a contradiction we assume there exists a Decider D that decides this language.
We build a Turing machine H which works the following way:
on input w

˝ if D accepts ww, then H does not halt.

˝ if D rejects ww, then H accepts.

Notice that

H accepts xHy &ñ D rejects xHyxHy &ñ H does not accept xHy.

Or to say it di!erently

HpxHyq Ó a
c
c
.

&ñ DpxHyxHyq Ó re
j.

&ñ HpxHyq Ò .

To see things slightly di!erently, since the machine H only stops when it accepts we can
reformulate the contradiction in

HpxHyq Ó&ñ HpxHyq Ò .

2.6 Some Other Undecidable Problems

Proposition 6.1

The following language is Turing recognizable but not decidable:

txMyw P t0, 1u
˚

| Mpwq Óu.
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Proof of Proposition 6.1:

By making use of any universal Turing machine, it is easy to check that this language
is Turing recognizable. Towards a contradiction we assume it also decidable, hence there
exists a Decider D that decides it. From D we build another decider D1 that decides

!
xMyw P t0, 1u

˚
| Mpwq Ó a

c
c
.)

.

on input xMyw, D1 runs as D until right before D halts.

˝ if D halts and rejects, then D1 halts and rejects as well,

˝ if D halts and accepts, then D1 runs any universal Turing machine U on xMyw again,
and then:

‚ if U halts and rejects, D1 halts and rejects, and

‚ if U halts and accepts, D1 halts and accepts.

Proposition 6.2

The following language is Turing recognizable but not decidable:

txMy P t0, 1u
˚

| Mpεq Óu.

Proof of Proposition 6.2:

The fact this language is Turing recognizable is immediate. It is not recursive because
otherwise,

txMyw P t0, 1u
˚

| Mpwq Óu

would be decidable as well, contradicting Proposition 6.1.
Indeed, towards a contradiction, we assume that there exists some decider D that decides

txMy P t0, 1u
˚

| Mpεq Óu

and build another decider D1 that decides

txMyw P t0, 1u
˚

| Mpwq Óu.

On input xMyw, D1 first computes the code xM1y of a Turing machine M1 which works as
follows on the empty word:
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(1) M1 first writes the word w, then moves its head back to the leftmost cell and places
itself in the initial state of the machine D.

(2) Then, M1 works exactly as M.

Proposition 6.3

For any language L, we have the following equivalence:

both L and LA are recursively enumerable &ñ L is recursive.

Proof of Proposition 6.3:

(&) is immediate.

(ñ) From M that recognizes L and MA that recognizes LA , we build a decider D as
follows, on input w repeatedly for i “ 1, 2, 3, . . . it recursively simulates first M on
w for i many steps, and in case M has not stopped, simulates M1

A
on w for i many

steps, where M1

A
is the same Turing machine as MA except that qacc. and qrej. are

swapped.

Corollary 6.1

The following languages are not recursively enumerable:

(1) t0, 1u
˚
z
!

xMyw P t0, 1u
˚

| Mpwq Ó a
c
c
.(

(2) t0, 1u
˚
z
!

xMyw P t0, 1u
˚

| Mpwq Ó
(

(3) t0, 1u
˚
z
!

xMy P t0, 1u
˚

| Mpεq Ó
(

(4)
!

xMyw P t0, 1u
˚

| Mpwq Ó re
j.

or Mpwq Ò
(

(5)
!

xMyw P t0, 1u
˚

| Mpwq Ò
(
.

(6)
!

xMy P t0, 1u
˚

| Mpεq Ò
(
.

Proof of Corollary 6.1:

Immediate consequences of Propositions 5.1, 6.1, 6.2, and 6.3.
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Proposition 6.4

The following problem is not decidable:

txMyw P t0, 1u
˚

| the computation of M on w uses all non-halting statesu.

Proof of Proposition 6.4:

Left as an exercise.

Rice’s Theorem 6.1

If C is any class of Turing-recognizable languages that is neither the whole class of Turing-
recognizable languages nor the empty set, then the following language is not decidable.

txMy P t0, 1u
˚

| LpMq P Cu.

In other words, if C is a non-empty proper class of Turing-recognizable languages, then the prob-
lem of determining whether the language of a Turing machine belongs to the class is undecidable.

Notice that when C is the empty set, then this problem is obviously decidable since

txMy P t0, 1u
˚

| LpMq P Hu “ H.

The same holds when C is the whole class of Turing-recognizable languages, checking whether
the language recognized by a Turing machine belongs to C in this case is trivial.

Proof of Rice’s Theorem:

The assumption that C is any class of Turing-recognizable languages that is neither the
whole class of Turing-recognizable languages nor the empty set yields that there exist one
Turing machine

˝ Min such that LpMinq P C, and

˝ Mout such that LpMoutq R C.

Towards a contradiction, we assume that there exists some decider DLpMqPC which decides
membership in C, namely:

txMy P t0, 1u
˚

| LpMq P Cu.

By making use of DLpMqPC we build another decider DMpεqÓ that decides the halting problem



Recursivity 59

on empty tape, namely:
txMy P t0, 1u

˚
| Mpεq Óu.

For this, we distinguish between H P C and H R C.

(1) If H R C, the decider DMpεqÓ on input xMy computes xM1y the code of a machine M1

which works the following way: on input w, M1 stores the input w and runs as M
on the empty tape the following way:

˝ if Mpεq Ò, then M1 will not stop, so that we have M1
pwq Ò

˝ if Mpεq Ó, right before M reaches an halting configuration, M1 erases the whole
working tape, writes the word w back as input, and starts now working exactly
as Min on the input w.

We notice that if Mpεq Ó, then M1
pwq Ó a

c
c
.

&ñ Minpwq Ó a
c
c
.

.

So, we have

˝ if Mpεq Ó, then LpM1
q “ LpMinq P C

˝ if Mpεq Ò, then LpM1
q “ H R C.

Finally, after on the input xMy the decider DMpεqÓ has computed the code of xM1y,
it just runs DLpMqPC on the input xM1y to get the result it wants.

(2) If H P C, the construction is as above replacing Min with Mout. This time, on input
M:

˝ if Mpεq Ó, then LpM1
q “ LpMoutq R C

˝ if Mpεq Ò, then LpM1
q “ H P C.

So that the decider DMpεqÓ just runs DLpMqPC on the input xM1y, swapping the answers
yes/no to get the result it wants.

Therefore, in both cases, the halting problem on empty string becomes decidable. A con-
tradiction.

Corollary 6.2

One cannot decide whether

(1) the language recognized by a TM is also recognized by an automaton;

(2) the language recognized by a TM is not recognized by any automaton;
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(3) the language recognized by a TM contains at least one word;

(4) the language recognized by a TM contains at least three words;

(5) the language recognized by a TM contains all finite words.

(6) the language recognized by a TM contains exactly all finite words of length # 7.

(7) the language recognized by a TM contains exactly all finite words of length $ 7.

(8) the language recognized by a TM contains infinitely many words.

Proof of Corollary 6.2:

Left as an exercise.

2.6.1 The Post Correspondence Problem

Imagine you are given a finite set of dominos of the form P “

! ”
ui
vi

ı
| i P I

)
where ui, vi P ”˚.

For instance:

P “

# ”aa

ba

ı
,

„
baa

ca

"
,
”acca

a

ı
,
”aaaa

accc

ı
,
” a

ac

ı
,

„
b

ab

"
,
” c

cc

ı
,

„
bb

bbbb

" +
.

The question is then whether there exists a non-empty sequence (repetitions of dominos are
accepted!) „

ui0

vi0

" „
ui1

vi1

" „
ui2

vi2

"
. . .

„
uik´1

vik´1

" „
uik

vik

"

such that
ui0 ¨ ui0 . . . ¨ uik´1 ¨ uik “ vi0 ¨ vi0 . . . ¨ vik´1 ¨ vik .

Such a sequence is called a match.
For instance: ”acca

a

ı ” c

cc

ı ” a

ac

ı „
b

ab

"
is a match since we get

accacab

accacab

Post Correspondence Problem.

It is undecidable, given any instance P “

! ”
ui
vi

ı
| i P I

)
of the Post Correspondence Problem,

to determine whether there exists a match or not.
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Proof of Post Correspondence Problem:

See exercises sheet or Sipser’s “Introduction to the Theory of Computation” [52, pp. 227–
233].

The whole idea of the proof consists in reducing the Halting Problem to this one. So that if we
were able to decide the Post Correspondence Problem, then we could as well decide the Halting
Problem. Since we know that the halting problem is undecidable, this implies that the Post
Correspondence Problem is also undecidable.

2.7 Turing Machine with Oracle

A Turing machine with an oracle is one finite object (a Turing machine suitable for any oracle:
an almost usual 2-tape Turing Machine) plus one infinite object so that this Turing machine
can have access to an infinite amount of information – something a usual Turing machine never
does.

Definition 7.1

(1) An oracle is any subset O " N.

(2) An oracle-compatible-Turing machine (o-c-TM) is a 2-tape Turing machine similar to
any 2-tape Turing machine, except that it only reads but never writes on tape 2 :

O “ pQ, ”, %, ω, q0, qacc., qrej.q

(3) An oracle-compatible-Turing machine O equipped with the oracle O, on input word
w P ”˚ (in short an oracle TM OO on word w P ”˚) is nothing but the Turing
machine O whose initial configuration is

´
q0w , q0ςO

¯

1 2

where ςO P t0, 1u
ω is the infinite word

ςOp0qςOp1qςOp2q . . . . . . ςOpnqςOpn ` 1q . . . . . . . . . . . .
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defined by

ςOpnq “

$
’&

’%

1 if n P O
and

0 if n R O.

OO

0 00 01 10

1 111 1 101

2

t t

00 000 0 0 00 0 0 0 0

This means that on tape 2 the whole characteristic function of the oracle is already available
once the machine starts. So that the machine is granted access to all of this ”external” infor-
mation: it knows which integers belong to O and which integers do not. For instance, in case O
is the set of all integers n such that:

(1) n reads “ 1xMyw ” in the decimal numeral system,

(2) Mpwq Ó;

then OO may be able to decide the Halting Problem. Of course this does not lead to a contra-
diction since there is no chance that such a Turing machine 6 ever sees its own code onto tape
2 (although the code of O – or the code of an equivalent Turing machine – does show on 2 ).

Example 7.1

Let O " N be the set of all the codes of Turing machines that halt on the empty input:

O “ t1xMy2 P N | Mpεq Óu
7.

We describe an oracle-compatible-TM O that, once equipped with the oracle O, decides
the language

txMy P t0, 1u
˚

| Mpεq Óu.

The machine OO works this way:

(1) on input w P t0, 1u
˚, the Turing machine OO checks whether w is the code of a Turing

machine. If it is not the case it rejects right away; otherwise,

6
we are talking about O

O
and not just O!
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(2) it computes n “ 1xMy2, then checks on tape 2 whether ςOpnq “ 1 – in which case
it accepts – or ςOpnq “ 0 – in which case it rejects.

Notation 7.1

˝ Notice that the mapping f : t0, 1u
˚ bij.

!!Ñ N
w *!Ñ 1w

2
´ 1

is a bijection.

For any word w we write xwy for fpwq, and for any integer k we write xky for f´1
pkq.

For instance x0010y “ 10010
2

´ 1 “ 18 ´ 1 “ 17, and x12y “ 101 since 1101
2

´ 1 “

p8 ` 4 ` 1q ´ 1 “ 13 ´ 1 “ 12.

˝ Given any language L " t0, 1u
˚, we write OL " N for the set

OL “

!
xwy P N | w P L

)
“

!
k P N | xky P L

)
.

˝ Given any subset O " N, we write LpOq " t0, 1u
˚ for the language

LpOq “

!
w P t0, 1u

˚
| xwy P O

)
“

!
xky P t0, 1u

˚
| k P O

)
.

So OL is the oracle associated with the language L, and LpOq is the language associated with
the oracle O. (For instance, the oracle for the empty language is the empty set: OH “ H.)

So, we have

(1) a coding for the Turing machines:

tx, y, q, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, \, L, R, t, u, p, q, ,u˚ 1´1
!!Ñ t0, 1u

˚

M *!Ñ xMy

(2) a coding for the words:

t0, 1u
˚ bij.

!!Ñ N
w *!Ñ xwy

(3) a coding for the integers:

N bij.
!!Ñ t0, 1u

˚

k *!Ñ xky
7w2

stands for the integer n that, once written in base 2, yields the word w
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We will use the notation xMy instead of x xMy y which means we consider first the word in t0, 1u
˚

that codes the Turing machine M, then the integer that codes this word. All we need is that
xMy is an integer that codes the Turing machine M, and two di!erent machines are coded with
two di!erent integer (M ‰ M1

ùñ xMy ‰ xM1y). Also that the — coding and deciphering —
operations xMy ù xMy and xMy ù xMy can be performed by Turing machines.

Proposition 7.1

Given any recursive language L " t0, 1u
˚, and any oracle Turing machine OOL :

˝ LpOOLq is recursively enumerable, and moreover

˝ if OOL is an oracle Decidera, then LpOOLq is recursive.

a
meaning that O

OL halts on every input.

Proof of Proposition 7.1:

Left as an exercise.

Definition 7.2: Turing Reducibility

Given any oracles OA,OB " N,
we write

OA #T OB

and say OA is “Turing reducible” to OB, if there exists an o-c-TM OOB which, starting on
the empty tape, computes ςOA .

Proposition 7.2

Given any OA,OB " N, the following are equivalent:

(1) OA is Turing reducible to OB,

(2) for every o-c-TM M, there exists an o-c-TM N such that L
`
MOA

˘
“ L

`
NOB

˘
.

Moreover, in case MOA is an oracle Decider, we can make sure that NOB is an oracle
Decider too.
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Proof of Proposition 7.2:

Left as an easy exercise.

Notation 7.2

Given any OA,OB " N, we write

˝ OA #T OB if OA is Turing reducible to OB;

˝ OA ”T OB if OA #T OB and OB #T OA;

˝ OA )T OB if OA #T OB but OB +#T OA.

Notice that ”T is an equivalence relation:

˝ OA ”T OA

`
since OA #T OA

˘
;

˝ OA ”T OB &ñ OB ”T OA;

˝

OA ”T OB

and

OB ”T OC

,
.

- ùñ OA ”T OC

¨

˝since
OA #T OB

and

OB #T OC

,
.

- ùñ OA #T OC

˛

‚.

Example 7.2

Given any language L " t0, 1u
˚,

(1) OL ”T OLA “ N⊋OL,

(2) H #T OL,

(3) L is recursive &ñ OL ”T H,

(4) L is not recursive &ñ H )T OL.

(5) OL ”T OLpOLq holds since we have OL “ OLpOLq .
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Definition 7.3: Turing Degree

Given any oracle OA " N, the equivalence class

rOAs”T “ tOB " N | OB ”T OAu

is called a Turing degree.

The ordering #T on oracles induces an ordering # on the set TD of all Turing degrees: given
any Turing degrees d, e P TD,

d # e &ñ A #T B holds for some oracle A P d and some oracle B P e

or equivalently

d # e &ñ A #T B holds for all oracleA P d and all oracle B P e

As usual, we make use of the notation

d ) e &ñ d # e but e , d

Example 7.3

We list a few basic facts about Turing degrees.

(1) Given any d P TD
cardpdq “ →0.

The reason is that there are countably many Turing machines and always infinitely
many oracle that are Turing equivalent: for instance, given any A " N and any k P N
form

Ak “ t2n | n P Au Y t2k ` 1u

We have both A ”T Ak (any k P N) and Ak ‰ Al (any k ‰ l P N).

(2) Given any set A " N the set

tB " N | B #T Au

is countable for the reason that there are only countably many Turing machines.

(3) Given any d P TD
card

!
e P TD | e # d

(
# →0.

(4) Given any d P TD
card

!
e P TD | d # e

(
“ 2→0 .
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To see this, observe that if
d “ rAs”T

then given any B " N the set

A ‘ B “ t2n | n P Au Y t2n ` 1 | n P Bu

satisfies
A #T A ‘ B.

Moreover,
card

!
A ‘ B | B " N

(
“ 2→0 .

Since every Turing degree is countable, we obtain

card

´!
A ‘ B | B " N

( L
”T

¯
“ 2→0

which gives the result.

(5) As Sacks showed in 1961 – see [28] p. 157 and also [49, 50] – the ordering pTD, #q

does not have a familiar shape since every countable partial ordering pP, #q can be
embedded into pTD, #q.

Proposition 7.3

(1)
!
LpOq " t0, 1u

˚
| O #T H

)
“ Rec.

(2)
!
L " t0, 1u

˚
| OL #T Halt

)
- R.E .

(the inclusion is strict since both HA

alt ”T Halt and L
pHA

altq
R Rec. hold)

(3)
!
LpOq " t0, 1u

˚
| O #T Halt

)
- R.E .

Where

˝ Rec. is the class of all recursive (i.e. decidable) languages

˝ R.E . is the class of all recursively enumerable (i.e. Turign recognizable) languages
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˝ Halt stands for the set of codes of Turing machines that halt on the empty input:

Halt “ O!
xMyPt0,1u˚ | MpεqÓ

(

“
!

xMy P N | Mpεq Ó
(
.

Proof of Proposition 7.3:

Left as an exercise.

We now introduce an operation called the “jump” which shows that there is no maximum Turing
degree, since from any given oracle A it provides us with some oracle A1 (“ the jump of A ”)
which satisfies A )T A1.

Definition 7.4: Jump operator

Given any subset A " N, the jump of A (denoted A1) is

A1
“ O!

xMyPt0,1u˚ | M an o-c-TM, MA
pεqÓ

(

“
!

xMy P N | MA
pεq Ó

(
.

Example 7.4

Halt ”T H
1.

Proposition 7.4

For every A " N the set

A:
“

!
φ2pxMy, xwyq P N | MA

pwq Ó
(

satisfies
A1

”T A:.

¨

˚̋
See page 84 for the definition of φ2 : N ˆ N bij.

!!!Ñ N
px, yq *!Ñ

px`yq¨px`y`1q

2 ` y.

˛

‹‚



Recursivity 69

Proof of Proposition 7.4:

Left as an easy exercise.

Proposition 7.5

For every A " N,
A )T A1.

Proof of Proposition 7.5:

We decompose A )T A1 into first A #T A1, then A1
+#T A.

(A #T A
1
) We need to find an o-c-TM M that outputs ςA while being equipped with the

oracle A1. To compute ςApnq this machine proceeds as follows: it computes the code
xN ny of any o-c-TM N n that, no matter what its input w is, proceeds as follows when
it is equipped with the oracle O:

˝ if ςOpnq “ 1, then N npwq Ó;

˝ if ςOpnq “ 0, then N npwq Ò.

Then MA1
outputs

ςApnq “ ςA1pxN nyq.

(A
1

+#T A) Towards a contradiction, we assume that A1
#T A holds. Since A:

”T A1 we
have A:

#T A holds as well. So, there exists an o-c-TM N such that NA computes
ςA: .

We build an o-c-TM H such that HA on every input w P t0, 1u
˚:

(1) computes k “ φ2pxwy, xwyq, then

(2) by making use of N as a subprogram, computes the value ςA:pkq, then

˝ if ςA:pkq “ 0, then HA
pwq Ó;

˝ if ςA:pkq “ 1, then HA
pwq Ò.

We obtain the following contradiction:

HA
pxHyq Ó &ñ φ2pxHy, xHyq R A:

&ñ HA
pxHyq Ò .
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MA
0 MA

1 MA
2 MA

3 MA
4 MA

5 MA
n

xM0y 0 1 1 0 1 0 . . . 0 . . .

xM1y 1 1 1 0 0 0 . . . 0 . . .

xM2y 1 0 1 0 0 0 . . . 1 . . .

xM3y 0 0 1 0 1 0 . . . 0 . . .

xM4y 0 1 0 1 1 1 . . . 0 . . .

xM5y 1 1 0 0 0 0 . . . 0 . . .

...
...

...
...

...
...

...
...

xMny 1 0 0 0 1 1 . . . 1 . . .
...

...
...

...
...

...
...

...

Figure 2.1: Diagonal argument: swap 0’s and 1’s on the diagonal.

Below we show a picture that illustrates this diagonal argument that we have just used.

If pMiqiPN is a enumeration of all the oracle-compatible Turing machines, then we make sure
that the machine H we build is none of them by ensuring that for each i P N, there exists an
input word (its own code xMiy) such that HA has a completely di!erent behaviour than MA

i

on this word: for this we swap 0’s and 1’s on the diagonal: 0 ù 1 and 1 ù 0.

Corollary 7.1

The following strict ordering between jumps is satisfied:

H )T H
1

)T H
2

)T . . . )T H

nhkkikkj
2 ¨ ¨ ¨ 1

)T H

n`1hkkikkj
2 ¨ ¨ ¨ 1

)T . . . )T H

εhkkikkj
2 ¨ ¨ ¨

)T H

ε`1hkkikkj
2 ¨ ¨ ¨ 1

)T . . . .

where

k P H

εhkkikkj
2 ¨ ¨ ¨ 1

&ñ

$
’’’&

’’’%

k “
pn`mqpn`m`1q

2 ` m

and

m P H

nhkkikkj
2 ¨ ¨ ¨ 1 .

Proof of Corollary 7.1:

Let us use the notations H
pnq for H

nhkkikkj
2 ¨ ¨ ¨ 1 and H

pωq for H

εhkkikkj
2 ¨ ¨ ¨ .
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The only thing one needs to prove is that

H
pnq

)T H
pωq

holds for every integer n.

H
pnq

#T H
pωq is almost immediate, since it is straightforward to build an o-c-TM On that

outputs ς
Hpnq when it is equipped with the oracle H

pωq since

ς
Hpnqpmq “ ς

Hpεq

ˆ
pn ` mqpn ` m ` 1q

2
` m

˙
.

H
pωq

+#T H
pnq it is enough to proceed by contradiction and show that

H
pωq

#T H
pnq

would imply
H

pn`1q
#T H

pnq.

Iterating the jump operator into the transfinite

Notice that if for every limit countable ordinal ϱ we fix some bijection

fϑ : N .Ñ ϱ ˆ N
k *!Ñ pφ, mq

we may then define an uncountable sequence of jumps
`
H

pϖq
˘
ϖ!ω1

by ordinal induction:

˝ H
p0q

“ H

˝ H
pϖ`1q

“ H
pϖq

1

˝ H
pϑq

“ tfϑpφ, mq P N | m P H
pϖq

u.

It is immediate to see that the sequence
`
H

pϖq
˘
ϖ!ω1

is strictly )T -increasing, or in other words

H
pϖq

)T H
pϱq

holds for every φ ) ↼ ) ↽1.
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Chapter 3

Recursive Functions

The whole chapter is highly inspired by René Cori and Daniel Lascar book’s book: “Math-

ematical Logic, Part 2, Recursion Theory, Gödel Theorems, Set Theory, Model Theory” [12].

Recursive functions are functions from Np to N. We will show that they have a strong relation
with the Turing computable ones.
We define the set of recursive functions by induction. For this purpose, for any integer p, we
denote by NpNp

q the set of all mappings of the form Np
!Ñ N. Notice that Np is a notation for

the set of all mappings ti P N | i ) pu !Ñ N. When p “ 0, the set ti P N | i ) pu becomes
ti P N | i ) 0u “ H. Thus the set N0 only contains one element: the empty function whose
graph is H. Therefore the set of all mappings of the form N0

!Ñ N contains all mappings that
assign one integer to the empty function:

N0
!Ñ N “

"
f : tHu !Ñ N

H !Ñ n

ˇ̌
ˇ̌ n P N

*
.

So, as may be expected, mappings in NpN0
q are identified with elements of N.

3.1 Primitive Recursive Functions

Definition 1.1

projection: If i is any integer such that 1 # i # p holds, the ith projection ⇀p
i is the

function of NpNp
q defined by

⇀p
i px1, . . . , xpq “ xi.

successor: S P NN is the successor functiona.
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composition: Given f1, . . . , fn P NpNp
q and g P NpNn

q, the composition h “ gpf1, . . . , fnq P

NpNp
q is defined by

hpx1, . . . , xpq “ g
`
f1px1, . . . , xpq, . . . , fnpx1, . . . , xpq

˘

We often make use of the notation !Ñx for px1, . . . , xpq so that for instance

g
`
f1p

!Ñx q, . . . , fnp
!Ñx q

˘

stands for
g

`
f1px1, . . . , xpq, . . . , fnpx1, . . . , xpq

˘
.

recursion: Given g P NpNp
q and h P NpNp`2

q, there exists a unique f P NpNp`1
q such that

for all !Ñx P Np and y P N satisfies

(1) fp
!Ñx , 0q “ gp

!Ñx q

(2) fp
!Ñx , y ` 1q “ h

`
!Ñx , y, fp

!Ñx , yq
˘

We say f is defined by recursion on both g (for the initial step) and h (for the
successor steps).

aSpnq “ n ` 1.

Definition 1.2

The set of primitive recursive (Prim. Rec.) functions is the least that

(1) contains:

(a) All constants Np
!Ñ N (all i P NpNp

q s.t. ip!Ñx q “ i – any i, p P N).

(b) All projections ⇀p
i (any p P N, any 1 # i # p)

(c) The successor function S P NN.

(2) and is closed under

(a) composition

(b) recursion

We set up these functions in a hierarchy pRnqnPN:

(1) R0 is the set of all functions in (1)(a),(1)(b) and (1)(c).

(2) Rn`1 is the closurea of Rn under (2)(a) and (2)(b).
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Clearly
Prim. Rec. “

#

nPN
Rn.

aRn`1 “ Rn Y th obtained by composition on the basis of functions in Rnu Y th obtained by induction

on the basis of functions in Rnu.

Example 1.1

(1) Addition: px, yq !Ñ x ` y
We have: "

x ` 0 “ x
x ` py ` 1q “ px ` yq ` 1.

(3.1)

Formally: $
’&

’%

addpx, 0q “ ⇀1
1pxq

add px, y ` 1q “ S
´
⇀3
3

`
x, y, addpx, yq

˘¯

“ S ˝ ⇀3
3

`
x, y, addpx, yq

˘
(3.2)

(2) Multiplication: px, yq !Ñ x ¨ y
We have "

x ¨ 0 “ 0
x ¨ py ` 1q “ x ¨ y ` x.

(3.3)

Formally:

#
multpx, 0q “ 0pxq

multpx, y ` 1q “ add

´
⇀3
3

`
x, y,multpx, yq

˘
, ⇀3

1

`
x, y,multpx, yq

˘¯
.

(3.4)

(3) Exponentiation: x !Ñ nx

We have "
n0

“ 1
nx`1

“ nx
¨ n.

(3.5)

Formally: #
expnp0q “ 1

expnpx ` 1q “ mult

´
⇀2
2

`
x, expnpxq

˘
, n

¯
.

(3.6)

(4) Factorial: x !Ñ x!
We have "

0! “ 1
px ` 1q! “ x! ¨ px ` 1q.

(3.7)
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Formally:
$
&

%

factp0q “ 1

factpx ` 1q “ mult

ˆ
⇀2
2

`
x, factpxq

˘
, S

´
⇀2
1

`
x, factpxq

˘¯˙
.

(3.8)

Example 1.2

We define 9́ P NpN2
q by "

x 9́ y “ x ´ y if x ’ y,
“ 0 otherwise.

To show 9́ P NpN2
q belongs to Prim. Rec., we first show x !Ñ x 9́ 1 belongs to Prim. Rec.

"
0 9́ 1 “ 0
px ` 1q 9́ 1 “ x

(3.9)

Formally: "
0 9́ 1 “ 0pxq

px ` 1q 9́ 1 “ ⇀2
1

`
x, x 9́ 1

˘ (3.10)

"
x 9́ 0 “ x
x 9́ py ` 1q “

`
x 9́ y

˘
9́ 1

(3.11)

Formally: #
x 9́ 0 “ ⇀1

1pxq

x 9́ py ` 1q “

´
⇀3
3

`
x, y, x 9́ y

˘¯
9́ 1

(3.12)

Definition 1.3

A set A " Np is primitive recursive (Prim. Rec.) if its characteristic function (ςA P NpNp
q)

is primitive recursive.

Example 1.3

(1) The set H is Prim. Rec. since ςH “ 0 is Prim. Rec.

(2) The set N is Prim. Rec. since ςN “ 1 is Prim. Rec.

(3) The set )N“ tpx, yq | x ) yu is Prim. Rec. ς!N
px, yq “ 1 9́ p1 9́ py 9́ xqq.
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On computable and partial functions

Definition 1.4

(1) pdomf , fq is a partial function Np
!Ñ N if f is a mapping domf !Ñ N where

domf " Np.

(2) pdomf , fq is a total function Np
!Ñ N if domf “ Np holds.

We say that f is undefined on x – or fpxq is undefined – if x R domf .

Notation 1.1

We write f P Npdom#Np
q for pdomf , fq is a partial function Np

!Ñ N whose domain is domf .

Notice that given any two partial functions f, g P Npdom#Np
q,

f “ g &ñ

$
&

%

domf “ domg

and

@x fpxq “ gpxq.

Definition 1.5

A partial function f P Npdom#Np
q is “Turing Computable” (TC) if there exists a Turing

machine M such that on input !Ñx “ px1, . . . , xpq:

(1) if fp
!Ñx q is not defined, then Mp

!Ñx q Ò;

(2) if p
!Ñx q P domf , Mp

!Ñx q Ó with fp
!Ñx q written on its tape.

Proposition 1.1

Given any partial function f P Npdom#Np
q,

f is Turing Computable &ñ Gf “
!`

!Ñx , fpxq
˘

|
!Ñx P domf

(
is Turing Recognizable.
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f P NpNp
q f P Npdom#Np

q

Gf " Np`1
recursive

||

decidable

rec. enum.

||

Turing rec.

Figure 3.1: Relations between Turing computable functions and their graphs

Proof of Proposition 1.1:

(ñ) From M that computes f it is immediate to build N that recognizes Gf . On input

p
!Ñx , yq it simulates M if Mp

!Ñx , yq Ó a
c
c
.

it compares fpxq with y and if fpxq “ y it
accepts, otherwise it rejects.

(&) From N that recognizes Gf , we build M that computes f as follows, on input !Ñx re-
peatedly for i “ 1, 2, 3, . . . it recursively simulates N on p

!Ñx , 0q, p
!Ñx , 1q, p

!Ñx , 2q, . . . , p
!Ñx , iq

for i many steps. If N accepts p
!Ñx , nq, then M prints out the value n.

Corollary 1.1

Given any function f : Np
!Ñ N,

f is both total and Turing Computable ùñ Gf is recursive (decidable).

Proof of Corollary 1.1:

Left as an immediate exercise.

We notice tha following:
All functions in R0 are total and Turing computable. By induction on n, it is easy to show that
all functions in Rn are also total and Turing computable. Therefore

˝ All Prim. Rec. functions are total and Turing computable.
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˝ All graphs of Prim. Rec. functions are recursive

Even though the class of all Prim. Rec. functions is included in the class of total and turing
computable functions, the inverse inclusion does not hold1.

3.2 Variable Substitution

Proposition 2.1: PPPrim. RRRec. closed under variable substitution

If f P NpNp
q, is Prim. Rec., then given any ⇁ : t1, . . . , pu !Ñ t1, . . . , pu, the function

g P NpNp
q defined by

gpx1, . . . , xpq “ fpxςp1q, . . . , xςppqq

is also Prim. Rec.

Proof of Proposition 2.1:

We have
gpx1, . . . , xpq “ fpxςp1q, . . . , xςppqq “ f

`
⇀p
ςp1q

p
!Ñx q, . . . , ⇀p

ςppq
p
!Ñx q

˘
.

Proposition 2.2

If A " Nn is Prim. Rec. and f1, . . . , fn P NpNp
q are Prim. Rec. then

t
!Ñx P Np

| pf1p
!Ñx q, . . . , fnp

!Ñx qq P Au

is Prim. Rec.

Proof of Proposition 2.2:

Set B “ t
!Ñx P Np

| pf1p
!Ñx q, . . . , fnp

!Ñx qq P Au. We have

ςBp
!Ñx q “ ςA

´
f1p

!Ñx q, . . . , fnp
!Ñx q

¯
.

1
see exercise on the Ackermann function A P NpN

2q
defined by

Apm,nq “
$
&

%

n ` 1 if m “ 0,
Apm ´ 1, 1q if m ! 0 and n “ 0,
A

`
m ´ 1, Apm,n ´ 1q˘

if m ! 0 and n ! 0.

Apm,nq is fast growing ; for instance 2 ¨ 1019728 " Ap4, 2q " 3 ¨ 1019728.
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Example 2.1

If f, g P NpNp
q are Prim. Rec., then the following sets are also Prim. Rec.:

(1) t
!Ñx | fp

!Ñx q ’ gp
!Ñx qu (2) t

!Ñx | fp
!Ñx q “ gp

!Ñx qu (3) t
!Ñx | fp

!Ñx q ) gp
!Ñx qu.

Proposition 2.3

If A, B " Np are Prim. Rec. then AYB, AXB, A⊋B, A#B and Np⊋A are all Prim. Rec.

Proof of Proposition 2.3:

ςAYB “ 1 9́
`
1 9́ pςA ` ςBq

˘

ςAXB “ ςA ¨ ςB

ςA⊋B “ ςA ¨
`
1 9́ ςB

˘

ςA!B “
`
1 9́ ςA ¨ ςB

˘
¨

ˆ
1 9́

´`
1 9́ ςA

˘
¨
`
1 9́ ςB

˘¯˙

ςAc “ 1 9́ ςA.

Proposition 2.4: Case study

If f1, . . . , fn`1 P NpNp
q and A1, . . . , An P Np are all Prim. Rec., then g P NpNp

q defined by:

gp
!Ñx q “

$
’’’’’’’’’’&

’’’’’’’’’’%

f1p
!Ñx q if !Ñx P A1

f2p
!Ñx q if !Ñx P A2 ⊋ A1

f3p
!Ñx q if !Ñx P A3 ⊋ pA1 Y A2q

...
...

...
fip!Ñx q if !Ñx P Ai ⊋ pA1 Y A2 Y . . . Y Ai´1q

...
...

...
fn`1p

!Ñx q if !Ñx R pA1 Y . . . Y Anq

is also Prim. Rec.
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Proof of Proposition 2.4:

g “ f1 ¨ ςA1 ` f2 ¨ ςpA2⊋A1q ` . . . ` fn`1 ¨ ς`
A1YA2Y...YAn

˘A .

Corollary 2.1

sup(x1, . . . , xn) and inf(x1, . . . , xn) are Prim. Rec.

Proof of Corollary 2.1:

Left as an exercise.

Proposition 2.5

f P NpNp`1
q is Prim. Rec., then g, h P NpNp

q below are Prim. Rec.:

gpx1, . . . , xp, yq “

t“yÿ

t“0

fpx1, . . . , xp, tq,

hpx1, . . . , xp, yq “

t“y$

t“0

fpx1, . . . , xp, tq.

Proof of Proposition 2.5:

Left as an exercise (both are easily defined by recursion).

3.3 Bounded Minimisation and Bounded Quantification

Proposition 3.1: Bounded minimisation

If A " Np`1 is Prim. Rec., then f P NpNp`1
q defined below is also Prim. Rec.:

fp
!Ñx , zq “

"
0 if @t # z p

!Ñx , tq R A,
the least t # z such that p

!Ñx , tq P A otherwise.
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fp
!Ñx , zq is denoted by µt # z p

!Ñx , tq P A.

Proof of Proposition 3.1:

f is defined by:
$
’’’’’’’’’’&

’’’’’’’’’’%

fp
!Ñx , 0q “ 0

fp
!Ñx , z ` 1q “

$
’’’’’’’’&

’’’’’’’’%

fp
!Ñx , zq if

y“z%
y“0

ςAp
!Ñx , yq $ 1

z ` 1 if

y“z%
y“0

ςAp
!Ñx , yq “ 0 and p

!Ñx , z ` 1q P A

0 if

y“z`1%
y“0

ςAp
!Ñx , yq “ 0.

Proposition 3.2: PPPrim. RRRec. closed under bounded quantification

The set of all Prim. Rec. predicates is closed under bounded quantification: i.e., If A "

Np`1 is Prim. Rec., then

˝ tp
!Ñx , zq : Dt # z p

!Ñx , tq P Au ˝ tp
!Ñx , zq : @t # z p

!Ñx , tq P Au

are both Prim. Rec.

Proof of Proposition 3.2:

Set

˝ B “ tp
!Ñx , zq : Dt # z p

!Ñx , tq P Au, ˝ C “ tp
!Ñx , zq : @t # z p

!Ñx , tq P Au.

We have

˝ ςBp
!Ñx , zq “ 1 9́ p1 9́

t“z%
t“0

ςAp
!Ñx , tqq, ˝ ςCp

!Ñx , zq “

t“z&
t“0

ςAp
!Ñx , tqq.
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Example 3.1

˝ t2n : n P Nu is Prim. Rec. It is defined by recursion

"
ςp0q “ 1
ςpn`1q “ 1 9́ ςpnq

˝ The mapping P NpN2
q

px, yq !Ñ

„
x

y

"
defined below is Prim. Rec.:

$
’&

’%

„
x

y

"
“ 0 if y “ 0

“ integer part of
x

y
otherwise.

Formally $
&

%

„
x

y

"
“ 0 if y “ 0

“ µt # x y ¨ pt ` 1q ’ x otherwise.

˝
!

px, yq | y divides x
(

P Prim. Rec.:

ςpx, yq “ 1 9́

˜
x 9́

ˆ
y ¨

„
x

y

"˙ ¸
.

˝ Prime “ tx P N | x is a prime numberu P Prim. Rec.:

x P Prime &ñ

$
’’’’’’’’’’’’’&

’’’’’’’’’’’’’%

x ’ 1

and

@y # x

$
’’’’&

’’’’%

y “ 1
or

y “ x
or

y does not divide x.

˝ & : N !Ñ N defined by & pnq “ n ` 1th prime number P Prim. Rec..

"
& p0q “ 2
& pn ` 1q “ µz # p& pnq! ` 1q z ’ & pnq and z P Prime.
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3.4 Coding Sequences of Integers

We define Prim. Rec. functions that allow to treat finite sequences of integers as integers.
Every sequence xx1, . . . , xpy will be “coded” by a single integer φppx1, . . . , xpq. And from this
single integer φppx1, . . . , xpq one will be able to recover the elements of the original sequence by
having Prim. Rec. functions ↼i

p that satisfy

↼i
p

´
φppx1, . . . , xpq

¯
“ xi.

Proposition 4.1

For every non-zero p P N there exists Prim. Rec. functions ↼1
p , ↼

2
p , . . . , ↼

p
p P NN and φp P

NpNp
q such that $

’’’’’&

’’’’’%

φp : Np bij.
!!!Ñ N

and

φ´1
p pxq “

`
↼1
ppxq, . . . , ↼p

ppxq
˘
.

Proof of Proposition 4.1:

We start by defining φ1 “ ↼1
1 “ id. Then we move on to

φ2px, yq “
px ` yq ¨ px ` y ` 1q

2
` y.

This is obtained by looking at the following picture and noticing that

(1) φ2px, yq “ φ2px ` y, 0q ` y, and

(2) φ2px ` y, 0q “ 1 ` 2 ` ¨ ¨ ¨ ` px ` yq

“
1
2

˜ 1
`

x ` y
`

2
`

x ` y ´ 1
` ¨ ¨ ¨ `

x ` y
`

1

¸
.
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0,4

0,3

0,2

0,0

0,1

1,3

1,2

1,0

1,1

3,2

3,0

3,1

2,3

2,2

2,0

2,1

4,0

4,1

5,0

0 1

2

5

9

14

4

8

13

3

7

12

18

6

11

17

10

16

15

19

We have

(1) ↼1
2pnq “ µx # n Dt # n φ2px, tq “ n

(2) ↼2
2pnq “ µy # n Dt # n φ2pt, yq “ n.

Then we define φp`1, ↼1
p`1, ↼2

p`1, . . . . . . , ↼p´1
p`1 , ↼p

p`1 and ↼p`1
p`1 by induction on p P N:

˝ φp`1px1, . . . , xp, xp`1q “ φp

`
x1, . . . , xp´1, φ2pxp, xp`1q

˘

˝ ↼1
p`1 “ ↼1

p ;

˝ ↼2
p`1 “ ↼2

p ;

...

˝ ↼p´1
p`1 “ ↼p´1

p ;

˝ ↼p
p`1 “ ↼1

2 ˝ ↼p
p ;

˝ ↼p`1
p`1 “ ↼2

2 ˝ ↼p
p .
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Example 4.1

A di!erent way of coding sequences of integers:

"
cpεq “ 1
cpx0, . . . , xpq “ & p0q

x0`1
¨ & p1q

x1`1
¨ ¨ ¨ & ppq

xp`1.

From n P N ⊋ t0u we recover the sequence xx0, . . . , xpy such that cpx0, . . . , xpq “ n by
considering the Prim. Rec. function d P NpN2

q which yields the exponents of the prime
numbers:

dpi, nq “ µx # n & piqx`1
does not divide n.

3.5 Partial Recursive Functions

We recall that

(1) pdomf , fq is a partial function Np
!Ñ N if f is a mapping domf !Ñ N where domf " Np.

(2) pdomf , fq is a total function Np
!Ñ N if domf “ Np holds.

We say that f is undefined on x – or fpxq is undefined – if x R domf . We use the notation
f P Npdom#Np

q to signify that pdomf , fq is a partial function Np
!Ñ N whose domain is domf .

Notice that for any two partial functions f, g P Npdom#Np
q:

f “ g holds &ñ

$
&

%

domf “ domg

and

@x fpxq “ gpxq.

Definition 5.1: Composition

Given f1, . . . , fn P Npdom#Np
q and g P Npdom#Nn

q, the composition h “ gpf1, . . . , fnq P NpNp
q

is $
’’’’’’’’’’&

’’’’’’’’’’%

hp
!Ñx q is undefined i”

$
’’’’’’&

’’’’’’%

!Ñx R

’

1"i"n

domfi

or otherwise

`
f1p

!Ñx q, . . . , fnp
!Ñx q

˘
R domg.

hp
!Ñx q is defined otherwise and hp

!Ñx q “ g
`
f1p

!Ñx q, . . . , fnp
!Ñx q

˘
.

“ g
`
f1px1, . . . , xpq, . . . , fnpx1, . . . , xpq

˘
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Definition 5.2: Recursion

Given g P Npdom#Np
q and h P Npdom#Np`2

q, there exists a unique f P Npdom#Np`1
q such that

for all !Ñx P Np and y P N:

(1) $
&

%

fp
!Ñx , 0q is undefined if !Ñx R domg

and

fp
!Ñx , 0q is defined otherwise with fp

!Ñx , 0q “ gp
!Ñx q.

(2) $
’’’’’’’’’’&

’’’’’’’’’’%

fp
!Ñx , y ` 1q is undefined if

$
’’’’&

’’’’%

p
!Ñx , yq R domf

or

`
!Ñx , y, fp

!Ñx , yq
˘

R domh.

and

otherwise fp
!Ñx , y ` 1q is defined and fp

!Ñx , y ` 1q “ h
`
!Ñx , y, fp

!Ñx , yq
˘
.

Definition 5.3: Minimization

Given f P Npdom#Np`1
q, we define g P Npdom#Np

q by:

gp
!Ñx q “ µy fp

!Ñx , yq “ 0.

Notice that

gp
!Ñx q “ y &ñ

$
’’’’’’’&

’’’’’’’%

@z ) y

$
’&

’%

fp
!Ñx , zq is defined!

and

fp
!Ñx , zq ’ 0

and

fp
!Ñx , yq “ 0.

Definition 5.4: Partial recursive functions

The set of partial recursive (Part. Rec.) functions is the least that

(1) contains:
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(a) All constants Np
!Ñ N (all i P NpNp

q s.t. ip!Ñx q “ i – any i, p P N).

(b) All projections ⇀p
i (any p P N, any 1 # i # p)

(c) The successor function S P NN.

(2) and is closed under

(a) composition

(b) recursion

(c) minimisation.

Our next goal is to show that a function f is in Part. Rec. if and only if it is Turing computable.
One direction is easy, the other one is more involved. One side e!ect of our proof will show that
every partial recursive function can be obtained by applying the minimisation at most once.

Lemma 5.1

Every partial recursive function is Turing computable.

Proof of Lemma 5.1:

We need to show that given any p P N ⊋ t0u and any f P Npdom#Np
q there exists some

Turing machine M that computes f . This means that on input pn1, . . . , npq it stops in
configuration qacc.fpn1, . . . , npq if pn1, . . . , npq P domf , and it never stops otherwise. Of
course, we need to fix a certain representation of both integers and finite sequence of
integers. For simplicity, let us say that the integers are represented in base-ten and the
sequences as pn1, . . . , npq so that the input alphabet is

” “

!
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, p, q, ,

)
.

So, for instance a Turing machine computes Add if on input word “p385, 218q” it returns
the word “603”.
We do the proof by induction on the number of operation among

˝ composition ˝ recursion ˝ minimisation

that are necessary to obtain f P Npdom#Np
q on the basis of

˝ all constants ˝ all projections ˝ the successor function.
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(1) It is quite obvious that

˝ if f P Npdom#Np
q is constant, then there exists some basic Turing machine that

computes it.

˝ Every projection ⇀p
i (any 1 # i # p) is also trivially computable.

˝ The successor function is clearly computable as well.

(2) (a) Assume f1, . . . , fn P Npdom#Np
q are computed respectively by Mf1 , . . . , Mfn and

g P Npdom#Nn
q is computed by Mg. Then f “ gpf1, . . . , fnq P NpNp

q is computed
by Mf which works as follows:

on input !Ñx “ pn1, . . . , npq:

successively for each i :“ 1, . . . ,n the machine Mf simulates Mfi on input
!Ñx , if Mfip

!Ñx q Ó a
c
c
.

with some output mi it stores mi.

(In case all simulations of machines Mf1 , . . . , Mfn do stop) Mf finally simulates
Mg on input pm1, . . . , mnq.

It is clear that if either

(A) !Ñx R

’

1"i"n

domfi or (B)
´
f1p

!Ñx q, . . . , fnp
!Ñx q

¯
R domg,

then Mf p
!Ñx q Ò. In the opposite case, Mf p

!Ñx q Ó a
c
c
.

with the right answer.

(b) Assume g P Npdom#Np
q and h P Npdom#Np`2

q are computed respectively by Mg

and Mh. Then f defined by recursion:

(A) fp
!Ñx , 0q “ gp

!Ñx q

(B) fp
!Ñx , y ` 1q “ h

`
!Ñx , y, fp

!Ñx , yq
˘

is computed by Mf which works as follows:

˝ on input p
!Ñx , 0q it simply simulates Mg on input !Ñx , and

˝ on input p
!Ñx , n`1q Mf first simulates Mg on input !Ñx which givesa fp

!Ñx , 0q.
Then

recursively for i :“ 0, . . . ,n Mf simulates Mh on
`
!Ñx , i, fp

!Ñx , iq
˘

which
yieldsb fp

!Ñx , i ` 1q.

It is clear that Mf brings the result if and only if every step fp
!Ñx , iq (i :“

0, . . . , n ` 1) is defined. Otherwise it simply never stops.

(c) Assume g P Npdom#Np`1
q is computed by Mg. We design Mf that on input !Ñx

computes
µy gp

!Ñx , yq “ 0.
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set i :“ 0 Mf simulates Mg on input p
!Ñx , iq. If Mg stops and outputs the

value of gp
!Ñx , iq,

˝ if gp
!Ñx , iq “ 0 Mf stops and outputs i,

˝ if gp
!Ñx , iq ‰ 0, Mf starts over again with i :“ i ` 1.

Notice that Mf stops and outputs n “ µy gp
!Ñx , yq “ 0 if and only if

˝ @i # n p
!Ñx , iq P domg,

˝ @i ) n gp
!Ñx , iq ’ 0 and

˝ gp
!Ñx , nq “ 0.

a
in case Mgp#Ñx q Ó a

c
c
.

.

b
in case Mh

`#Ñx , i, fp#Ñx , iq˘ Ó a
c
c
.

.

Lemma 5.2

Every Turing computable partial function f P Npdom#Np
q is Part. Rec.

Proof of Lemma 5.2:

We show an even stronger result: given any Turing Machine M and any recursive coding
of words on the tape alphabet % we show that the partial function ”˚

!Ñ %˚ which maps
v P ”˚ to w P %˚ if and only if the Turing machine from the initial configuration q0v stops
in some configuration w0qacc.w1 with w0w1 “ w is partial recursive in the code. This means
the function f 1

P Npdom#N1
q defined by

#
f 1

`
codepvq

˘
is undefined if Mpvq Ò or Mpvq Ó re

j.

;

f 1
`
codepvq

˘
“ codepw0w1q if M Ó a

c
c
.

in config. w0qacc.w1.

We first choose a coding of the configurations of M: We assume

˝ ” “ t1, . . . , k ´ 1u and % “ t0, . . . , k ´ 1u with k ’ 1 and necessarily 0 “ \.

˝ Q “ tq0, . . . , qmu with q0, q1, q2 being respectively the initial state, the rejecting state
and the accepting state.

The coding of a word w “ a0 . . . an that we choose is

xa0 . . . any “

ÿ

0"i"n

ai ¨ ki.
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This coding is not injective (this will not matter for our purpose) for any two word which
di!er by the tailing blanks in their prefix will have the same encoding:

xa0 . . . any “ xa0 . . . an\y.

But on the other hand, this encoding is surjective.
A configuration w0qrw1 of the Turing machine will be coded by

xw0qrw1y “ φ4pr, xw0y, xw1y, |w0|q.

For instance, the initial configuration of the Turing machine with input w is:

xq0wy “ φ4p0, 0, xwy, 0q

“ φ2

´
0, φ2

`
0, φ2pxwy, 0q

˘¯

“ φ2

´
0, φ2

`
0, xwypxwy`1q

2

˘¯

“ φ2

´
0,

`
xwypxwy`1q

2

˘`
xwypxwy`1q

2 `1
˘

2

¯

“

¨

˝
`

xwypxwy`1q
2

˘`
xwypxwy`1q

2 `1

˘
2

˛

‚̈

¨

˝
`

xwypxwy`1q
2

˘`
xwypxwy`1q

2 `1

˘
2 `1

˛

‚

2 .

To say that w is an input word is to say that w P ”˚ (we will identify words of the form
w P ”˚ with words of the form w \ . . . \ since our coding will not be able to distinguish
thema and also because the input word really is the infinite word w \ . . . \ . . .).
So we see that a word w “ a0 . . . an P %˚ is an input word if for no i ) n we have both
ai “ \ and ai`1 ‰ \. This means that xa0 . . . any “ a0 ¨ k0

` a1 ¨ k1
` . . . ` an ¨ kn satisfies

ai “ 0 ñ ai`1 “ 0 (any i ) n). With our coding, we recover the coe$cient ai as

ai “

„
xa0 . . . any

ki

"
9́

ˆ„
xa0 . . . any

ki`1

"
¨ k

˙
.

Therefore the set InputM of all the codes of input words of M is Prim. Rec.:

ςInputMpmq “ 1 if @i # m

ˆ ”m

ki

ı
9́

´” m

ki`1

ı
¨ k

¯
“ 0 ùñ

” m

ki`1

ı
9́

´” m

ki`2

ı
¨ k

¯
“ 0

˙

“ 0 otherwise

Since the coding of words that we choose is surjective, it comes that a configuration C is
an initial configuration if and only if there exists m P InputM

xCy “

ˆ`
mpm`1q

2

˘`
mpm`1q

2 `1
˘

2

˙
¨

ˆ`
mpm`1q

2

˘`
mpm`1q

2 `1
˘

2 ` 1

˙

2
.
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Therefore the set InitM of all the codes of initial configurations of M is Prim. Rec.

ςInitMpcq “

#
1 if Dm # c

`
ςInputMpmq “ 1 ^ φ4p0, 0, m, 0q “ c

˘
,

0 otherwise.

We now describe the transition from a given configuration C to the next configuration C 1

(C ñ C 1), in other words, we analyse the we obtain the code of C 1 on the basis of both the
code of C and the transition function ω.
A transition yields a move of the head either to the right or to the left: ωpqr, alq “ pqr1 , al1 , Rq

or ωpqr, alq “ pqr1 , al1 , Lq. We need to consider di!erently these two forms, together with
di!erentiating also whether the head can or cannot move to the left when the transition
function says sob.

When ωpqr,alq “ pqr1 ,al1 ,Rq, we have C ñ C 1 is w0qrw1 ñ w1
0qr1w1

1 with

(1) w1
0 “ w0al1 (2) |w1

0| “ 1 ` |w0| (3) alw1
1 “ w1.

so that

(1) xw1
0y “ xw0y ` l1

¨ k|w0|
“ ↼2

4pxCyq ` l1
¨ kϱ4

4pxCyq

(2) |w1
0| “ |w0| ` 1 “ ↼4

4pxCyq ` 1

(3) alw1
1 “ w1 so that xw1

1y “

„
↼3
4pxCyq

k

"
.

So, we obtain:

if

$
’’’&

’’’%

↼1
4pxCyq “ r

and

↼3
4pxCyq 9́

ˆ
k ¨

„
↼3
4pxCyq

k

"˙
“ l,

then

xC 1y “ φ4

ˆ
r1, ↼2

4pxCyq ` l1
¨ kϱ4

4pxCyq,

„
↼3
4pxCyq

k

"
, ↼4

4pxCyq ` 1

˙
.
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When ωpqr,alq “ pqr1 ,al1 ,Lq, there are two di!erent cases depending on whether the head
can move to the left or not.

if w0 “ ε, then we have C ñ C 1 is w0qrw1 ñ w1
0qr1w1

1 with

(1) w1
0 “ ε

(2) |w1
0| “ |w0| “ |ε|

(3) w1
1 “ al1v and w1 “ alv for some word v.

So that we get

(1) xw1
0y “ xεy “ 0

(2) |w1
0| “ |ε| “ 0

(3) xw1
1y “ l1

`

„
↼3
4pxCyq

k

"
¨ k.

So, all in all we obtain:

if

$
’’’’’’’’’’&

’’’’’’’’’’%

↼1
4pxCyq “ r

and

↼3
4pxCyq 9́

ˆ
k ¨

„
↼3
4pxCyq

k

"˙
“ l,

and

↼4
4pxCyq “ 0

then

xC 1y “ φ4

ˆ
r1, 0, l1

`

„
↼3
4pxCyq

k

"
¨ k, 0

˙
.

if w0 ‰ ε, then we have C ñ C 1 is w0qrw1 ñ w1
0qr1w1

1 with

(1) w1
0al “ w0

(2) |w1
0| “ |w0| ´ 1

(3) w1
1 “ al1w1.

so that

(1) xw1
0y “ ↼2

4pxCyq 9́

„
↼2
4pxCyq

kpϱ4
4pxCyq 9́ 1q

"
¨ kpϱ4

4pxCyq 9́ 1q
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(2) |w1
0| “ ↼4

4pxCyq 9́ 1

(3) xw1
1y “ l1

` ↼3
4pxCyq ¨ k.

So, we have found:

if

»

——————————–

↼1
4pxCyq “ r

and

↼3
4pxCyq 9́

ˆ
k ¨

„
↼3
4pxCyq

k

"˙
“ l

and

↼4
4pxCyq ‰ 0

fi

((((((((((fl

, then

xC 1y “ φ4

ˆ
r1, ↼2

4pxCyq 9́

„
↼2
4pxCyq

kpϱ4
4pxCyq 9́ 1q

"
¨ kpϱ4

4pxCyq 9́ 1q, l1
` ↼3

4pxCyq ¨ k, ↼4
4pxCyq 9́ 1

˙
.

To wrap up everything that we did so far, we recursively define a mapping f : N2
!Ñ N

such that if n codes a word on ” – i.e., n “ xwy for some w P ”˚ – then fpn, tq “ xCn,ty
where Cn,t stands for the configuration that the Turing machine reaches after t-many steps
from the initial configuration q0w.
Since the machine stops if it reaches an accepting or a rejecting configuration, we will simply
assume that in any of these two cases the configuration of the Turing machines remains the
same: if Cn,t is either an accepting or a rejecting configuration, then Cn,t`x “ Cn,t holds
for every x P N.
We set ωL and ωR are the two following finite – hence Prim. Rec. – subsets of N4:

ωL “

!
pr, l, r1, l1

q P t0, . . . mu ˆ t0 . . . k ´ 1u ˆ t0, . . . mu ˆ t0 . . . k ´ 1u | ωpr, lq “ pr1, l1, Lq

)

and

ωR “

!
pr, l, r1, l1

q P t0, . . . mu ˆ t0 . . . k ´ 1u ˆ t0, . . . mu ˆ t0 . . . k ´ 1u | ωpr, lq “ pr1, l1, Rq

)

For our convenience we assume that % “ ” Y t\u. This way the mapping f : N2
!Ñ N we

currently construct is total (f P NpN2
q). For readability we use the notation k

i
for ↼i

4pkq

(any k P N, i # 4).

initial case
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fpn, 0q “

$
&

%

1 if n R InputM

φ4p0, 0, n, 0q if n P InputM

successor case

fpn, t ` 1q “

$
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’%

fpn, tq if fpn, tq
1

“ 1 or fpn, tq
1

“ 2;

φ4

˜
r1, fpn, tq

2
` l1

¨ kfpn,tq
4

,

«
fpn, tq

3

k

)
, fpn, tq

4
` 1

¸
if

˜
fpn, tq

1
, fpn, tq

3
9́

˜
k ¨

«
fpn, tq

3

k

)¸
, r1, l1

¸
P ωR;

φ4

˜
r1, 0, l1

`

«
fpn, tq

3

k

)
¨ k, 0

¸
if

$
’’’’’&

’’’’’%

˜
fpn, tq

1
, fpn, tq

3
9́

˜
k ¨

«
fpn, tq

3

k

)¸
, r1, l1

¸
P ωL

and

fpn, tq
4

“ 0;

φ4

˜
r1, fpn, tq

2
9́

«
fpn, tq

2

k

´
fpn,tq

4 9́ 1
¯

)
¨ k

´
fpn,tq

4 9́ 1
¯

, l1
` fpn, tq

3
¨ k, fpn, tq

4
9́ 1

¸
if

$
’’’’’&

’’’’’%

˜
fpn, tq

1
, fpn, tq

3
9́

˜
k ¨

«
fpn, tq

3

k

)¸
, r1, l1

¸
P ωL

and

fpn, tq
4

‰ 0.

Notice that f P NpN2
q is Prim. Rec. and that Mpwq Ó a

c
c
.

if and only if there exists some t P N
such that ↼1

4

`
fpxwy, tq

˘
“ 2.

Moreover, in this case, we recover the code of the content of the tape wt from fpxwy, tq by

xwty “ ↼2
4

`
fpxwy, tq

˘
` kϱ4

4

`
fpxwy,tq

˘
¨ ↼3

4

`
fpxwy, tq

˘
.

Finally, we only need to fix both (1) a recursive representation of the natural numbers and
(2) what it means for a machine to compute a partial function.

(1) we fix our coding of integers: every integer n is coded by the word 11 . . . 1loomoon
n

. The

function
x y : N !Ñ N

n *!Ñ xny
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such that xny “

ÿ

i!n

1 ¨ ki (i.e., xny is the code of the word 11 . . . 1loomoon
n

) is Prim. Rec.:

#
x0y “ 0

xn ` 1y “ xny ` kn.

(2) We only consider Turing machines that on any input words of the form

nhkkikkj
11 . . . 1, pro-

vided they reach an accepting configuration, they reach one of the form 11 . . . 1loomoon
n1

qacc..

We define the function fM P Npdom#Nr
q that M computes by:

˝ fMpn1, . . . , nrq is undefined if on input

ϖrpn1,...,nrqhkkikkj
11 . . . 1 either M Ò or M Ó re

j.

;

˝ fMpn1, . . . , nrq “ n if on input

ϖrpn1,...,nrqhkkikkj
11 . . . 1 M Ó a

c
c
.

in configuration 11 . . . 1loomoon
n

qacc..

Then the function leastM P Npdom#Nr
q that picks the minimum number of steps – if

any – the machine takes before reaching an accepting configuration when starting
from the initial one q0 11 . . . . . . 1loooomoooon

ϖrpn1,...,nrq

is defined by

leastMpn1, . . . , nrq “ µt ↼1
4 ˝ f

`
xφrpn1, . . . , nrqy, t

˘
“ 2.

It is undefined if the machine never halts or halts on the rejecting state.

At last, we are ready to provide the desired fM P Npdom#Nr
q. We make use of the fact

the position of the head in an accepting configuration indicates precisely the number
of 1’s there are on the tape:

fMpn1, . . . , nrq “ ↼4
4 ˝ f

´
xφrpn1, . . . , nrqy, leastMpn1, . . . , nrq

¯
.

a
remember that this is the reason why we chose 0 for the coding of the blank symbol.

b
this means whether or not the head is already in position 0 and the transition is of the form

εpqr, alq “ pqr1 , al1 , Lq.

Corollary 5.1

Every partial recursive function f P NpNr
q admits a construction that requires minimisation
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at most once.
Moreover, one has @n1 . . . @nr@k

´
fpn1, . . . , nrq “ k .Ñ Dt F pn1, . . . , nr, k, tq

¯
where

F " Nr`2 is Prim. Rec..

Proof of Corollary 5.1:

This is an immediate consequence of the whole proof of Lemma 5.2 since we proved that
every partial recursive function can be computed by a Turing machine whose function it
computes is fM P NpNr

q defined by

fMpn1, . . . , nrq “ ↼4
4 ˝ f

´
xφrpn1, . . . , nrqy, µt ↼1

4 ˝ f
`
xφrpn1, . . . , nrqy, t

˘
“ 2

¯
.

where all functions f P NpN2
q, φr P NpNr

q, ↼1
4 P NN, ↼4

4 P NN, x y P NN and the constant
2 P NpN0

q are Prim. Rec. as well as the equality relation.

Theorem 5.1

For every k ’ 0 and every f P Npdom#Nk
q the following are equivalent

˝ f is Part. Rec.,

˝ f is Turing computable.

Proof of Theorem 5.1:

Follows immediately from Lemmas 5.1 and 5.2.
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